CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique |
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜)†, Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程) |
Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800 °C can limit their further high-temperature structural applications. To improve the oxidation resistance of a high-Nb-content γ -TiAl alloy (Ti-45Al-8.5Nb, in units of at.%), a chromium (Cr) coating is prepared by using the plasma surface alloying technique, separately, at 800 °C and 1000 °C. The x-ray diffraction (XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ -TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage ( ≤ 90 h) and a biquadratic law stage ( ≥ 90 h), fit by weight-gain curves. Due to diffusion in the fabrication process and oxidation process, the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45Al-8.5Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.
|
Received: 28 May 2020
Revised: 20 July 2020
Accepted manuscript online: 28 July 2020
|
PACS:
|
61.05.-a
|
(Techniques for structure determination)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51601122), the 2019-2020 Intergovernmental Cooperation Projects in Science and Technology of the Ministry of Science and Technology, China (Grant No. CB02-03), the Science and Technology Major Project of Shanxi Province, China (Grant No. 20181102013), the "331 Project" Engineering Research Center of Shanxi Province, China (Grant No. PT201801), the China Postdoctoral Science Foundation (Grant No. 2017M620574), and the Fund from the State Key Laboratory of Advanced Metal Materials, China (Grant No. 2019-ZD02). |
Corresponding Authors:
†Corresponding author. E-mail: wangyongsheng@tyut.edu.cn
|
Cite this article:
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程) Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique 2020 Chin. Phys. B 29 126101
|
[1] Yamaguchi M, Inui H and Ito K Acta Mater. 48 307 DOI: 10.1016/S1359-6454(99)00301-82000 [2] Kim Y W JOM 41 24 https://link.springer.com/article/10.1007/BF032202671989 [3] Becker S, Rahmel A, Schorr M and Schütze M Oxid. Metal. 38 425 DOI: 10.1007/BF006656631992 [4] Yoshihara M and Kim Y W Intermetallics 13 952 DOI: 10.1016/j.intermet.2004.12.0072005 [5] Lin J P, Zhao L L, Li G Y, Zhang L Q, Song X P, Ye F and Chen G L Intermetallics 19 131 DOI: 10.1016/j.intermet.2010.08.0292011 [6] Zhang X J, Li Q, Zhao S Y, Gao C X, Wang L and Zhang J Appl. Surf. Sci. 255 1860 DOI: 10.1016/j.apsusc.2008.06.0412008 [7] Cheng Y X, Wang W, Zhu S L and Wang F H [8] Taniguchi S, Shibata T and Murakamit A Oxid. Metal. 41 103 DOI: 10.1007/BF011966451994 https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=FSFJ200903016&v=aOz [9] Wei XF, Zhang PZ, Wei D B, Zhou P, Zhang Y, Chen XH, Wang Q and Wang R N Rare Met. Mater. Eng. 43 707 http://rmme.ijournal.cn/rmme/ch/reader/view_abstract.aspx?file_no=20140340&flag=12014 [10] Ren B, Miao Q, Liang W P, Wang L, Xia J J and Liu W Corros. Sci. Prot. 27 363 https://www.cspt.org.cn/CN/10.11903/1002.6495.2015.1002015 [11] Braun R, Fröhlich M and Leyens C Int. J. Mater. Res. 101 637 DOI: 10.3139/146.1103222010 [12] Kim D J, Seo D Y, Huang X, Yang Q and Kim Y W Surf. Coat. Technol. 206 3048 DOI: 10.1016/j.surfcoat.2011.12.0042012 [13] Chen R R, Gong X, Wang Y, Qin G, Zhang N N, Su Y Q, Ding H S, Guo J J and Fu H Z Corros. Sci. 136 244 DOI: 10.1016/j.corsci.2018.03.0082018 [14] Yao J Q, He Y D, Wang D R and Lin J P Corros. Sci. 80 9 DOI: 10.1016/j.corsci.2013.08.0292014 [15] Yang X, Jiang Z P, Hao G J, Liang Y F, Dong X F and Lin J P Appl. Surf. Sci. 455 144 DOI: 10.1016/j.apsusc.2018.05.0322018 [16] Anghel E M, Marcu M, Banu A, Atkinson I, Paraschiv A and Petrescu S Ceram. Int. 42 12148 DOI: 10.1016/j.ceramint.2016.04.1482016 [17] Xu Z, Liu X, Zhang P, Zhang Y, Zhang G and He Z Surf. Coat. Technol. 201 4822 DOI: 10.1016/j.surfcoat.2006.07.1872007 [18] Xu Z and Xiong Frank F Plasma surface metallurgy with double glow discharge technology-Xe-tec process (Beijing: Science Press) DOI: 10.1007/978-981-10-5724-32017 [19] Wei D B, Chen X H, Zhang P Z, Ding F, Li F K and Yao Z J Appl. Surf. Sci. 441 448 DOI: 10.1016/j.apsusc.2018.02.0582018 [20] Zhang X, Xie X S, Yang Z M, Dong J X, Xu Z, Gao Y and Zhang T H Surf. Coat. Tech. 131 378 DOI: 10.1016/S0257-8972(00)00818-52000 [21] Qin L, Yang K K, Liu C S and Tang B Mater. Lett. 82 127 DOI: 10.1016/j.matlet.2012.05.0692012 [22] Wei D B, Zhang P Z, Yao Z J, Liang W P, Miao Q and Xu Z Corros. Sci. 66 43 DOI: 10.1016/j.corsci.2012.08.0632013 [23] Wei D B, Zhang P Z, Yao Z J, Zhou J T, Wei X F and Zhou P Appl. Surf. Sci. 261 800 DOI: 10.1016/j.apsusc.2012.08.1022012 [24] Chen X H, Zhang P Z, Wei D B, Ding F, Li F K, Wei X F and Ma S J Mater. Lett. 215 292 DOI: 10.1016/j.matlet.2017.12.1042018 [25] Paul A, Lauril T, Vuorinen V and Divinski S V Thermodynamics, Diffusion and the Kirkendall Effect in Solids(Springer Cham) https://link.springer.com/book/10.1007/978-3-319-07461-02014 [26] Zhao L L2010 The high temperature oxidation behavior of high Nb containing TiAl alloys and effects of alloying elements (Beijing: University of Science and Technology Beijing) [27] Li XJ, Cheng G A, Xue W B and Cheng Y J2007 J. Aero. Mater. 27 1 [28] Wang D R2012 Proceedings of the 9th National Surface Engineering Conference and the 4th National Youth Surface Engineering Forum [29] Li M S2001 High temperature oxidation of metals (Beijing: Metallurgical Industry Press) [30] Tsai S C, Huntz A M and Dolin C Mater. Sci. Eng. A 212 6 DOI: 10.1016/0921-5093(96)10173-81996 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|