Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126101    DOI: 10.1088/1674-1056/aba9c2

Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique

Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜)†, Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程)
Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800 °C can limit their further high-temperature structural applications. To improve the oxidation resistance of a high-Nb-content γ -TiAl alloy (Ti-45Al-8.5Nb, in units of at.%), a chromium (Cr) coating is prepared by using the plasma surface alloying technique, separately, at 800 °C and 1000 °C. The x-ray diffraction (XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ -TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage ( ≤ 90 h) and a biquadratic law stage ( ≥ 90 h), fit by weight-gain curves. Due to diffusion in the fabrication process and oxidation process, the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45Al-8.5Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.
Keywords:  titanium aluminum alloy      coating      isothermal oxidation      plasma surface alloying technique  
Received:  28 May 2020      Revised:  20 July 2020      Accepted manuscript online:  28 July 2020
PACS:  61.05.-a (Techniques for structure determination)  
  61.82.Bg (Metals and alloys)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51601122), the 2019-2020 Intergovernmental Cooperation Projects in Science and Technology of the Ministry of Science and Technology, China (Grant No. CB02-03), the Science and Technology Major Project of Shanxi Province, China (Grant No. 20181102013), the "331 Project" Engineering Research Center of Shanxi Province, China (Grant No. PT201801), the China Postdoctoral Science Foundation (Grant No. 2017M620574), and the Fund from the State Key Laboratory of Advanced Metal Materials, China (Grant No. 2019-ZD02).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程) Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique 2020 Chin. Phys. B 29 126101

[1] Yamaguchi M, Inui H and Ito K Acta Mater. 48 307 DOI: 10.1016/S1359-6454(99)00301-82000
[2] Kim Y W JOM 41 24
[3] Becker S, Rahmel A, Schorr M and Schütze M Oxid. Metal. 38 425 DOI: 10.1007/BF006656631992
[4] Yoshihara M and Kim Y W Intermetallics 13 952 DOI: 10.1016/j.intermet.2004.12.0072005
[5] Lin J P, Zhao L L, Li G Y, Zhang L Q, Song X P, Ye F and Chen G L Intermetallics 19 131 DOI: 10.1016/j.intermet.2010.08.0292011
[6] Zhang X J, Li Q, Zhao S Y, Gao C X, Wang L and Zhang J Appl. Surf. Sci. 255 1860 DOI: 10.1016/j.apsusc.2008.06.0412008
[7] Cheng Y X, Wang W, Zhu S L and Wang F H
[8] Taniguchi S, Shibata T and Murakamit A Oxid. Metal. 41 103 DOI: 10.1007/BF011966451994
[9] Wei XF, Zhang PZ, Wei D B, Zhou P, Zhang Y, Chen XH, Wang Q and Wang R N Rare Met. Mater. Eng. 43 707
[10] Ren B, Miao Q, Liang W P, Wang L, Xia J J and Liu W Corros. Sci. Prot. 27 363
[11] Braun R, Fröhlich M and Leyens C Int. J. Mater. Res. 101 637 DOI: 10.3139/146.1103222010
[12] Kim D J, Seo D Y, Huang X, Yang Q and Kim Y W Surf. Coat. Technol. 206 3048 DOI: 10.1016/j.surfcoat.2011.12.0042012
[13] Chen R R, Gong X, Wang Y, Qin G, Zhang N N, Su Y Q, Ding H S, Guo J J and Fu H Z Corros. Sci. 136 244 DOI: 10.1016/j.corsci.2018.03.0082018
[14] Yao J Q, He Y D, Wang D R and Lin J P Corros. Sci. 80 9 DOI: 10.1016/j.corsci.2013.08.0292014
[15] Yang X, Jiang Z P, Hao G J, Liang Y F, Dong X F and Lin J P Appl. Surf. Sci. 455 144 DOI: 10.1016/j.apsusc.2018.05.0322018
[16] Anghel E M, Marcu M, Banu A, Atkinson I, Paraschiv A and Petrescu S Ceram. Int. 42 12148 DOI: 10.1016/j.ceramint.2016.04.1482016
[17] Xu Z, Liu X, Zhang P, Zhang Y, Zhang G and He Z Surf. Coat. Technol. 201 4822 DOI: 10.1016/j.surfcoat.2006.07.1872007
[18] Xu Z and Xiong Frank F Plasma surface metallurgy with double glow discharge technology-Xe-tec process (Beijing: Science Press) DOI: 10.1007/978-981-10-5724-32017
[19] Wei D B, Chen X H, Zhang P Z, Ding F, Li F K and Yao Z J Appl. Surf. Sci. 441 448 DOI: 10.1016/j.apsusc.2018.02.0582018
[20] Zhang X, Xie X S, Yang Z M, Dong J X, Xu Z, Gao Y and Zhang T H Surf. Coat. Tech. 131 378 DOI: 10.1016/S0257-8972(00)00818-52000
[21] Qin L, Yang K K, Liu C S and Tang B Mater. Lett. 82 127 DOI: 10.1016/j.matlet.2012.05.0692012
[22] Wei D B, Zhang P Z, Yao Z J, Liang W P, Miao Q and Xu Z Corros. Sci. 66 43 DOI: 10.1016/j.corsci.2012.08.0632013
[23] Wei D B, Zhang P Z, Yao Z J, Zhou J T, Wei X F and Zhou P Appl. Surf. Sci. 261 800 DOI: 10.1016/j.apsusc.2012.08.1022012
[24] Chen X H, Zhang P Z, Wei D B, Ding F, Li F K, Wei X F and Ma S J Mater. Lett. 215 292 DOI: 10.1016/j.matlet.2017.12.1042018
[25] Paul A, Lauril T, Vuorinen V and Divinski S V Thermodynamics, Diffusion and the Kirkendall Effect in Solids(Springer Cham)
[26] Zhao L L2010 The high temperature oxidation behavior of high Nb containing TiAl alloys and effects of alloying elements (Beijing: University of Science and Technology Beijing)
[27] Li XJ, Cheng G A, Xue W B and Cheng Y J2007 J. Aero. Mater. 27 1
[28] Wang D R2012 Proceedings of the 9th National Surface Engineering Conference and the 4th National Youth Surface Engineering Forum
[29] Li M S2001 High temperature oxidation of metals (Beijing: Metallurgical Industry Press)
[30] Tsai S C, Huntz A M and Dolin C Mater. Sci. Eng. A 212 6 DOI: 10.1016/0921-5093(96)10173-81996
[1] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[2] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[3] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[4] Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文). Chin. Phys. B, 2021, 30(8): 088803.
[5] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[6] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[7] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[8] Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials
Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068201.
[9] Enhanced soft magnetic properties of iron powders through coating MnZn ferrite by one-step sol-gel synthesis
Dong Liu(刘冬), Shanmin Gao(高善民), Rencheng Jin(金仁成), Feng Wang(王峰), Xiaoxiao Chu(初晓晓), Taiping Gao(高太平), Yubao Wang(王玉宝). Chin. Phys. B, 2019, 28(5): 057503.
[10] Improved electrochemical performances of high voltage LiCoO2 with tungsten doping
Jie-Nan Zhang(张杰男), Qing-Hao Li(李庆浩), Quan Li(李泉), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088202.
[11] Effect of substrate curvature on thickness distribution of polydimethylsiloxane thin film in spin coating process
Ying Yan(闫英), Ping Zhou(周平), Shang-Xiong Zhang(张尚雄), Xiao-Guang Guo(郭晓光), Dong-Ming Guo(郭东明). Chin. Phys. B, 2018, 27(6): 068104.
[12] Influences of substrate temperature on microstructure and corrosion behavior of APS Ni50Ti25Al25 inter-metallic coating
Sh Khandanjou, M Ghoranneviss, Sh Saviz, M Reza Afshar. Chin. Phys. B, 2018, 27(2): 028104.
[13] Thin film dynamics in coating problems using Onsager principle
Yana Di(邸亚娜), Xianmin Xu(许现民), Jiajia Zhou(周嘉嘉), Masao Doi. Chin. Phys. B, 2018, 27(2): 024501.
[14] Physical manipulation of ultrathin-film optical interference for super absorption and two-dimensional heterojunction photoconversion
Guo-Yang Cao(曹国洋), Cheng Zhang(张程), Shao-Long Wu(吴绍龙), Dong Ma(马冬), Xiao-Feng Li(李孝峰). Chin. Phys. B, 2018, 27(12): 124202.
[15] Preparation of Se-based solar cell using spin-coating method in ambient condition
Menghua Zhu(朱孟花), Yaxin Deng(邓雅心), Weiwei Liu(刘伟伟), Xin Li(李欣). Chin. Phys. B, 2018, 27(1): 015202.
No Suggested Reading articles found!