Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 083101    DOI: 10.1088/1674-1056/27/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride

Dong-lan Wu(伍冬兰)1,2, Cheng-quan Lin(林成泉)1, Yu-feng Wen(温玉锋)1, An-dong Xie(谢安东)1, Bing Yan(闫冰)2
1 College of Mathematical and Physical Sciences, Jinggangshan University, Ji'an 343009, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  The potential energy curves (PECs) of 14 Λ-S states for magnesium chloride (MgCl) have been calculated by using multi-reference configuration interaction method with Davidson correction (MRCI+Q). The core-valence correlation (CV), scalar relativistic effect, and spin-orbit coupling (SOC) effect are considered in the electronic structure computations. The spectroscopic constants of X2Σ+ and A2Π states have been obtained, which are in good agreement with the existing theoretical and experimental results. Furthermore, other higher electronic states are also characterized. The permanent dipole moments (PDMs) of Λ-S states and the spinorbit (SO) matrix elements between Λ-S states are also computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the avoided crossing between the states with the same symmetry. The SOC effect is taken into account with Breit-Pauli operator, which makes the 14 Λ-S states split into 30 Ω states, and leads to a double-well potential of the Ω=(3)1/2 state. The energy splitting for the A2Π is calculated to be 53.61 cm-1 and in good agreement with the experimental result 54.47 cm-1. The transition dipole moments (TDMs), Franck-Condon factors (FCFs), and the corresponding radiative lifetimes of the selected transitions from excited Ω states to the ground state X2Σ+1/2 have been reported. The computed radiative lifetimes τν' of low-lying excites Ω states are all on the order of 10 ns. Finally, the feasibility of laser cooling of MgCl molecule has been analyzed.
Keywords:  MgCl      MRCI+Q      spectroscopic and transition properties      spin-orbit coupling  
Received:  09 April 2018      Revised:  24 May 2018      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  31.15.vn (Electron correlation calculations for diatomic molecules)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grand Nos. 11564019, 11147158, 11264020, and 11574114) and Jiangxi Provincial Education Department Project, China (Grand No. GJJ170654).
Corresponding Authors:  Bing Yan     E-mail:  yanbing@jlu.edu.cn

Cite this article: 

Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰) Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride 2018 Chin. Phys. B 27 083101

[1] Barber B E, Zhang K Q, Guo B and Bernath P F 1995 J. Mol. Spectrosc. 169 583
[2] Buckingham A D and Olegagio R M 1993 Chem. Phys. Lett. 212 253
[3] Baucchlicher C W, Langhoff S R, Steimle T C and Shirley J E 1990 J. Chem. Phys. 93 4179
[4] Walters O H and Barratt S 1928 Proc. R. Soc. London Ser. A 118 120
[5] Morgan F 1936 Phys. Rev. 50 603
[6] Sadygov R G, Rostas J, Taieb G and Yarkony D 1997 J. Chem. Phys. 106 4091
[7] Törring T, Ernst W E and Kindt S 1989 J. Chem. Phys. 90 4927
[8] Törring T, Ernst W E and Kändler J 1984 J. Chem. Phys. 81 4614
[9] Rice S F, Martin H and Field R W 1985 J. Chem. Phys. 82 5023
[10] Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G and Wang F H 2015 J. Chem. Phys. 143 024302
[11] Wan M J, Huang D H, Shao J X, Yu Y, Li S and Li Y Y 2015 J. Chem. Phys. 143 164312
[12] Singh M, Ghodgaokar G S and Saksena M D 1987 Can. J. Phys. 65 1594
[13] Hirao T, Bernath P F, Fellows C E, Gutterres R F and Vervloet M 2002 J. Mol. Spectrosc. 212 53
[14] Ohshima Y and Endo Y 1993 Chem. Phys. Lett. 213 95
[15] Rao V S N and Rao P T 1963 Indian J. Phys. 37 640
[16] Darji A B, Shah N R, Shah P M, Sureshkumar M B and Desai G S 1985 Pramana 25 571
[17] Singh M, Saksena M D and Ghodgaokar G S 1988 Can. J. Phys. 66 570
[18] Parl, G, Rostas J, Taieb G and Yarkony D R 1990 J. Chem. Phys. 93 6403
[19] Bogey M, Demuynck C and Destombes J L 1989 Chem. Phys. Lett. 155 265
[20] Wu D L, Tan B, Qin J Y, Wan H J, Xie A D, Yan B and Ding D J 2015 Spectrochim. Acta Part. A 150 499
[21] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, O Deegan M J, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, LloydA W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2012 MOLPRO, Version 2012.1, a package of ab initio programs
[22] Werner H J , Knowles P J, Knizia G, Manby F R and Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[23] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[24] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[25] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[26] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[27] Li R, Wei C L, Sun Q X, Sun E P, Xu H F and Yan B 2013 J. Phys. Chem. A 117 2373
[28] Li R, Zhang X M, Jin M X, Yan B and Xu H F 2014 Chem. Phys. Lett. 594 6
[29] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[30] Woon D E and Dunning T H 1993 J. Chem. Phys. 98 1358
[31] Wilson A K, Woon D E, Peterson K A and Dunning T H 1999 J. Chem. Phys. 110 7667
[32] Berning A, Schweizer M, Werner H J , Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[33] Le Roy R J 2007 LEVEL m 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels , University of Waterloo Chemical Physics Research Report CP-663, University of Waterloo, Ontario
[34] Wu D L, Tan B, Wen Y F, Zeng X F, Xie A D and Yan B 2016 Spectrochim. Acta Part. A 161 101
[35] Drakes J A 1995 J. Quantum Spectrosc. Radiat. Transfer 54 1039
[36] Rostas J, Shafizadeh N, Taieb G, Bourguignon B and Prisant M G 1990 Chem. Phys. 142 97
[37] Kang S Y, Gao Y F, Kuang F G, Gao T, Du J G and Jiang G 2015 Phys. Rev. A 91 042511
[38] Zhao S T, Yan B, Li R, Wu S and Wang Q L 2017 Chin. Phys. B 26 023105
[39] Wan M J, Jin C G, Yu Y, Huang D H and Shao J X 2017 Chin. Phys. B 26 033101
[40] Wei C L, Zhang X M, Ding D J and Yan B 2016 Chin. Phys. B 25 013102
[41] Moore C E 1971 Atomic Energy Levels, National Bureau of Standards, Washington, DC
[42] Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)
[43] Zou W L and Liu W J 2005 J. Comput. Chem. 26 106
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!