Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118101    DOI: 10.1088/1674-1056/ac7b1f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications

Jia-Li Liu(刘佳丽)1, Guo-Dong Fu(付国栋)1, Ping Wu(吴平)1,†, Shang Liu(刘尚)1, Jin-Guang Yang(杨金光)1, Shi-Ping Zhang(张师平)1, Li Wang(王立)2, Min Xu(许闽)3, and Xiu-Lan Huai(淮秀兰)3
1 Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3 Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  UiO-66 is a potential material for adsorption heat transformation (AHT) with high specific surface area, and excellent thermal and chemical stability. However, the low water adsorption capacity of UiO-66 in the low relative pressure range ($0< P/P_0< 0.3$) limits its application in AHT. We prepare the UiO-66 modified by MgCl$_{2 }$ through using the solvothermal method and impregnation method, and study their water vapor adsorption performances and heat storage capacities. Attributed to the extremely high saturated water uptake and excellent hydrophilicity of MgCl$_{2}$, the water adsorption performance of UiO-66 is improved, although the introduction of MgCl$_{2}$ reduces its specific surface area and pore volume. The water adsorption capacity at $P/P_0=0.3$ and the saturated water adsorption capacity of the UiO-66 (with MgCl$_{2}$ content of 0.57 wt%) modified by the solvothermal method are 0.27 g/g and 0.57 g/g at 298 K, respectively, which are 68.8% and 32.6% higher than the counterparts of pure UiO-66, respectively. Comparing with pure UiO-66, the water adsorption capacity of the UiO-66 (with MgCl$_{2}$ content of 1.02 wt%) modified by the impregnation method is increased by 56.3% and 14.0% at the same pressure, respectively. During 20 water adsorption/desorption cycles, the above two materials show high heat storage densities ($\sim1293 $ J/g and 1378 J/g). Therein, the UiO-66 modified by the solvothermal method exhibits the excellent cyclic stability. These results suggest that the introduction of an appropriate amount of MgCl$_{2}$ makes UiO-66 more suitable for AHT applications.
Keywords:  adsorption heat transformation      UiO-66      water vapor adsorption      MgCl2  
Received:  01 April 2022      Revised:  19 June 2022      Accepted manuscript online:  22 June 2022
PACS:  81.05.Rm (Porous materials; granular materials)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  88.80.-q (Energy delivery and storage)  
  88.05.Sv (Energy use in heating and cooling of residential and commercial buildings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51836009).
Corresponding Authors:  Ping Wu     E-mail:  pingwu@sas.ustb.edu.cn

Cite this article: 

Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰) Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications 2022 Chin. Phys. B 31 118101

[1] Wongsuwan W, Kumar S, Neveu P and Meunier F 2001 Appl. Therm. Eng. 21 1489
[2] Wu W, Zhang X L, Li X T, Shi W X and Wang B L 2012 Appl. Therm. Eng. 48 349
[3] Freni A, Maggio G, Sapienza A, Frazzica A, Restuccia G and Vasta S 2016 Appl. Therm. Eng. 104 85
[4] Jeremias F, Fröhlich D, Janiak C and Henninger S K 2014 New J. Chem. 38 1846
[5] Ng K C, Chua H T, Chung C Y, Loke C H, Kashiwagi T, Akisawa A and Saha B B 2001 Appl. Therm. Eng. 21 1631
[6] Kawano T, Kubota M, Onyango M S, Watanabe F and Matsuda H 2008 Appl. Therm. Eng. 28 865
[7] Kubota M, Ito T, Watanabe F and Matsuda H 2011 Appl. Therm. Eng. 31 1495
[8] Myat A, Kim Choon N, Thu K and Kim Y D 2013 Appl. Energy 102 582
[9] Risti? A, Logar N Z, Henninger S K and Kau?i? V 2012 Adv. Funct. Mater. 22 1952
[10] Varlec J, Krajnc A, Mazaj M, Risti? A, Vanatalu K, Oss A, Samoson A, Kau?i? V and Mali G 2016 New J. Chem. 40 4178
[11] An H J, Sarker M, Yoo D K and Jhung S H 2019 Chem. Eng. J. 373 1064
[12] Han B and Chakraborty A 2020 Energy Convers. Manage. 213 112825
[13] Wang Q, Tang S L, Tian S, Wei X J and Peng T F 2019 J. Nanomater. 2019 1
[14] Liu S, Wu P, Zhang S P, Fu G D, Yan D, Han X L, Huai X L and Xu M 2021 Z. Anorg. Allg. Chem. 647 1
[15] Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T, Yazaydin A O and Hupp J T 2012 J. Am. Chem. Soc. 134 15016
[16] Saha D and Deng S 2010 Tsinghua Science and Technology 15 363
[17] Kim M, Cahill J F, Su Y, Prather K A and Cohen S M 2012 Chem. Sci. 3 126
[18] Yang Q, Wiersum A D, Llewellyn P L, Guillerm V, Serre C and Maurin G 2011 Chem. Commun. (Camb) 47 9603
[19] Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S and Lillerud K P 2008 J. Am. Chem. Soc. 130 13850
[20] Henninger S K, Jeremias F, Kummer H and Janiak C 2011 Eur. J. Inorg. Chem. 2012 2625
[21] Zheng X, Ma Q L, Tan J M and Yu B 2021 Ind. Eng. Chem. Res. 60 4727
[22] Makhanya N, Oboirien B, Ren J W, Musyoka N and Sciacovelli A 2021 J. Energy Storage 34 102179
[23] Cmarik G E, Kim M, Cohen S M and Walton K S 2012 Langmuir 28 15606
[24] Fu G D, Wu P, Yang J G, Zhang S P and Huai X L 2022 Microporous Mesoporous Mater. 331 111642
[25] Lau C H, Babarao R and Hill M R 2013 Chem. Commun. (Camb) 49 3634
[26] Ebrahim A M and Bandosz T J 2013 ACS Appl. Mater. Inter. 5 10565
[27] Garzón-Tovar L, Pérez-Carvajal J, Imaz I and Maspoch D 2017 Adv. Funct. Mater. 27 1606424
[28] Sun Y Y, Spie? A, Jansen C, Nuhnen A, Gökpinar S, Wiedey R, Ernst S J and Janiak C 2020 J. Mater. Chem. A 8 13364
[29] Donkers P A J, Sögütoglu L C, Huinink H P, Fischer H R and Adan O C G 2017 Appl. Energy 199 45
[30] Whiting G T, Grondin D, Stosic D, Bennici S and Auroux A 2014 Sol. Energy Mater. Sol. Cells 128 289
[31] Shearer G C, Chavan S, Ethiraj J, Vitillo J G, Svelle S, Olsbye U, Lamberti C, Bordiga S and Lillerud K P 2014 Chem. Mater. 26 4068
[32] Hoa L T, Nhi L T T, Son L V T, Linh N L M, Hai H V M and Khieu D Q 2021 J. Nanomater. 2021 1
[33] Cao Y, Zhao Y X, Lv Z J, Song F J and Zhong Q 2015 J. Ind. Eng. Chem. 27 102
[34] Han Y T, Liu M, Li K Y, Sun Q, Zhang W S, Song C S, Zhang G L, Conrad Zhang Z and Guo X W 2017 Inorg. Chem. Front. 4 1870
[35] Huang Q Z, Lu G M, Wang J and Yu J G 2011 J. Anal. Appl. Pyrolysis 91 159
[36] Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J and Sing K S W 2015 Pure Appl. Chem. 87 1051
[37] Jeremias F, Khutia A, Henninger S K and Janiak C 2012 J. Mater. Chem. 22 10148
[38] Küsgens P, Zgaverdea A, Fritz H G, Siegle S and Kaskel S 2010 J. Am. Ceram. Soc. 93 2476
[39] Canivet J, Bonnefoy J, Daniel C, Legrand A, Coasne B and Farrusseng D 2014 New J. Chem. 38 3102
[40] Glaznev I, Ponomarenko I, Kirik S and Aristov Y 2011 Int. J. Refrig. 34 1244
[41] Ait Ousaleh H, Sair S, Mansouri S, Abboud Y, Faik A and El Bouari A 2020 Sol. Energy Mater. Sol. Cells 215 110601
[1] High adsorption and separation performance ofCO2 over N2 in azo-based (N=N) pillar[6]arene supramolecular organic frameworks
Yong-Chao Jiang(姜永超), Gui-Xia Li(李桂霞), Gui-Feng Yu(于桂凤), Juan Wang(王娟), Shu-Lai Huang(黄树来), and Guo-Liang Xu(徐国亮). Chin. Phys. B, 2021, 30(11): 118105.
[2] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[3] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[4] Influence of an inserted bar on the flow regimes in the hopper
Yi Peng(彭毅), Sheng Zhang(张晟), Mengke Wang(王梦柯), Guanghui Yang(杨光辉), Jiangfeng Wan(万江锋), Liangwen Chen(陈良文), and Lei Yang(杨磊). Chin. Phys. B, 2021, 30(2): 028101.
[5] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[6] Theoretical studies on alloying of germanene supported on Al (111) substrate
Qian-Xing Chen(陈前行), Hao Yang(杨浩), and Gang Chen(陈刚)†. Chin. Phys. B, 2020, 29(10): 108103.
[7] A numerical study of dynamics in thin hopper flow and granular jet
Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊). Chin. Phys. B, 2020, 29(4): 048102.
[8] Comparison study of GaN films grown on porous andplanar GaN templates
Shan Ding(丁姗), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Peng Chen(陈鹏), Bin Liu(刘斌), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2020, 29(3): 038103.
[9] High efficiency hydrogen purification through P2C3 membrane: A theoretical study
Zhao-Qin Chu(储兆琴), Xiao Gu(顾晓), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2019, 28(12): 128703.
[10] Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane
Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲). Chin. Phys. B, 2019, 28(4): 048102.
[11] Criteria for Beverloo's scaling law
Sheng Zhang(张晟), Ping Lin(林平), Guanghui Yang(杨光辉), Jiang-Feng Wan(万江锋), Yuan Tian(田园), Lei Yang(杨磊). Chin. Phys. B, 2019, 28(1): 018101.
[12] Influence of wall friction on granular column
Yang-Yang Yang(杨阳阳), Sheng Zhang(张晟), Ping Lin(林平), Jiang-Feng Wan(万江锋), Lei Yang(杨磊), Shurong Ding(丁淑蓉). Chin. Phys. B, 2019, 28(1): 018104.
[13] Low-temperature green synthesis of boron carbide using aloe vera
H V SarithaDevi, M S Swapna, G Ambadas, S Sankararaman. Chin. Phys. B, 2018, 27(10): 107702.
[14] Germanene nanomeshes:Cooperative effects of degenerate perturbation and uniaxial strain on tuning bandgap
Yan Su(苏燕), Xinyu Fan(范新宇). Chin. Phys. B, 2017, 26(10): 108101.
[15] Validation of the Wiedemann-Franz law in a granular s-wave superconductor in the nanometer scale
A Yousefvand, H Salehi, M Zargar Shoushtari. Chin. Phys. B, 2017, 26(3): 037401.
No Suggested Reading articles found!