Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080702    DOI: 10.1088/1674-1056/27/8/080702
GENERAL Prev   Next  

Calibration and data restoration of light field modulated imaging spectrometer

Li-Juan Su(苏丽娟)1, Qiang-Qiang Yan(严强强)1,2, Yan Yuan(袁艳)1, Shi-Feng Wang(王世丰)1, Yu-Jian Liu(刘宇健)1
1 Key Laboratory of Precision Opto-mechatronics Technology of Ministry of Education, Beihang University, Beijing 100191, China;
2 Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  

A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.

Keywords:  light field modulated imaging spectrometer      linear-variable filter      spectral calibration      spectral reconstruction  
Received:  26 February 2018      Revised:  20 April 2018      Accepted manuscript online: 
PACS:  07.60.Rd (Visible and ultraviolet spectrometers)  
  42.30.-d (Imaging and optical processing)  
  07.05.Fb (Design of experiments)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61635002), Beijing Natural Science Foundation (Grant No. 4172038), and the Qingdao Opto-electronic United Foundation, China.

Corresponding Authors:  Yan Yuan     E-mail:  yuanyan@buaa.edu.cn

Cite this article: 

Li-Juan Su(苏丽娟), Qiang-Qiang Yan(严强强), Yan Yuan(袁艳), Shi-Feng Wang(王世丰), Yu-Jian Liu(刘宇健) Calibration and data restoration of light field modulated imaging spectrometer 2018 Chin. Phys. B 27 080702

[1] Li S P, Wang L Y, Yan B, Li L and Liu Y J 2012 Chin. Phys. B 21 108703
[2] Zhang H M, Wang L Y, Yan B, Li L, Xi X Q and Lu L Z 2013 Chin. Phys. B 22 078701
[3] Yu K and Hu C M 2013 J. Appl. Rem. Sens 7 073589
[4] Clark R N, King T V V, Klejwa M, Swayze G A and Vergo N 1990 J. Geophys. Res. 95 12653
[5] Smith W L, Zhou D K, Harrison F W, Revercomb H E, Larar A M, Huang H L and Huang B 2001 Proc. SPIE 4151 94
[6] Green R O, Eastwood M L, Sature C M, Chrien T G, Aronsson M, Chippendale B J, Faust J A, Pavri B E, Chovit C J, Solic M, Olah M R and Willaims O 1998 Remote Sens. Environ. 65 227
[7] Gupta H 2008 Proc. SPIE 6940 69401P
[8] Antila J, Mannila R, Kantojärvi U, Rissanen A and Saari H 2012 Proc. SPIE 8374 83740F
[9] Hagen N and Kudenov M W 2013 Opt. Eng. 52 090901
[10] Descour M and Dereniak E L 1995 Appl. Opt. 34 4817
[11] Hagen N and Dereniak E L 2008 Appl. Opt. 47 F85
[12] Gorman A Fletcher-Holmes D W and Harvey A R 2010 Opt. Express 18 5602
[13] Wong G, Pilkington R and Harvey A R 2011 Opt. Lett. 36 1332
[14] Gao L, Kester R T and Tkaczyk T S 2009 Opt. Express 17 12293
[15] Kester R T, Bedard N, Gao L and Tkaczyk T S 2011 J. Biomed. Opt. 16 056005
[16] Yuan Y, Ding X M, Su L J and Wang W Y 2017 Chin. Phys. B 26 040701
[17] Gehm M E, John R, Brady D J, Willett R M and Schulz T J 2007 Opt. Express 15 14013
[18] Arce G R, Brady D J, Carin L, Arguello H and Kittle D S 2014 IEEE Signal Process. Mag. 31 105
[19] Qian L L, Lü Q B, Huang M and Xiangli B 2015 Chin. Phys. B 24 080703
[20] Liu Y Y, Lü Q B, Wu G Pei L L and Wang J W 2015 Acta Phys. Sin. 65 054205 (in Chinese)
[21] Kudenov M, Jungwirth M, Dereniak E and Gerhart G 2010 Opt. Express 18 5602
[22] Horstmeyer R, Euliss G, Athale R and Levoy M 2009 Proceeding of the IEEE International Conference on Computational Photography, April 16-17, 2009, San Francisco, USA, p. 1
[23] Cavanaugh D B, Lorenz J M, Unwin N and Dombrowski M 2009 Proc. SPIE 7457 74570O
[24] Meng L and Berkner K 2013 Proc. SPIE 8660 86600D
[25] Su L J, Zhou Z L, Yuan Y, Hu L and Zhang S Y 2015 Optik 126 877
[26] Gao L and Wang L V 2016 Phys. Rep. 616 1
[27] Hu L, Yuan Y, Su L J, Huang M and Li Y 2017 Opt. Cummun. 12 405
[28] Golub G H and Loan C F V 1980 Siam J. Numer. Anal. 17 883
[29] Wei M S 1992 Numer. Math. 62 123
[30] Qian S and Chen G 2012 IEEE T Geosci. Remote. 50 5033
[1] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[2] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[3] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[4] Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser
Hua-Wei Jin(靳华伟), Pin-Hua Xie(谢品华), Ren-Zhi Hu(胡仁志), Chong-Chong Huang(黄崇崇), Chuan Lin(林川), Feng-Yang Wang(王凤阳). Chin. Phys. B, 2020, 29(6): 060701.
[5] Modeling and analysis for the image mapping spectrometer
Yan Yuan(袁艳), Xiao-Ming Ding(丁晓铭), Li-Juan Su(苏丽娟), Wan-Yue Wang(王婉悦). Chin. Phys. B, 2017, 26(4): 040701.
[6] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[7] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
[8] Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy
Xue Lu(卢雪), Min Qin(秦敏), Pin-Hua Xie(谢品华), Jun Duan(段俊), Wu Fang(方武), Liu-Yi Ling(凌六一), Lan-Lan Shen(沈兰兰), Jian-Guo Liu(刘建国), Wen-Qing Liu(刘文清). Chin. Phys. B, 2016, 25(2): 024210.
[9] Exact calculation of the minimal thickness of the large optical path difference wind imaging interferometer
Zhang Chun-Min(张淳民), Ai Jing-Jing(艾晶晶), and Ren Wen-Yi(任文艺). Chin. Phys. B, 2011, 20(2): 020701.
[10] A diode laser spectrometer at 634nm and absolute frequency measurements using optical frequency comb
Yi Lin(伊林), Yuan Jie(袁杰), Qi Xiang-Hui(齐向晖), Chen Wen-Lan(陈文兰), Zhou Da-Wei(周大伟), Zhou Tong(周通), Zhou Xiao-Ji(周小计), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2009, 18(4): 1409-1412.
No Suggested Reading articles found!