INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Dependence of the solar cell performance on nanocarbon/Si heterojunctions |
Shiqi Xiao(肖仕奇)1,3, Qingxia Fan(范庆霞)1,3, Xiaogang Xia(夏晓刚)1,3, Zhuojian Xiao(肖卓建)1,3, Huiliang Chen(陈辉亮)1,3, Wei Xi(席薇)1,3, Penghui Chen(陈鹏辉)1,3, Junjie Li(李俊杰)1,3, Yanchun Wang(王艳春)1,2,3, Huaping Liu(刘华平)1,2,3, Weiya Zhou(周维亚)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Solar cells that combine single-crystalline silicon (Si) with graphene (G) have been widely researched in order to develop next-generation photovoltaic devices. However, the power conversion efficiency (PCE) of G/Si solar cell without chemical doping is commonly low due to the relatively high resistance of graphene. In this work, through combining graphene with carbon nanotube (CNT) networks, we fabricated three kinds of hybrid nanocarbon film/Si heterojunction solar cells in order to increase the PCE of the graphene based Si solar cell. We investigated the characteristics of different nanocarbon film/Si solar cells and found that their performance depends on the heterojunctions. Specifically, a doping-free G-CNT/Si solar cell demonstrated a high PCE of 7.9%, which is nearly equal to the combined value of two individuals (G/Si and CNT/Si). This high efficiency is attributed to the synergistic effect of graphene and CNTs, and can be further increased to 9.1% after applying a PMMA antireflection coating. This study provides a potential way to further improve the Si based heterojunction solar cells.
|
Received: 17 April 2018
Accepted manuscript online:
|
PACS:
|
88.30.rh
|
(Carbon nanotubes)
|
|
81.05.ue
|
(Graphene)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
88.40.jj
|
(Silicon solar cells)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0208402), the National Basic Research Program of China (Grant No. 2012CB932302), the National Natural Science Foundation of China (Grant Nos. 11634014, 51172271, and 51372269), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09040202). |
Corresponding Authors:
Weiya Zhou
E-mail: wyzhou@iphy.ac.cn
|
Cite this article:
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚) Dependence of the solar cell performance on nanocarbon/Si heterojunctions 2018 Chin. Phys. B 27 078801
|
[1] |
Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotech. 5 574
|
[2] |
Wang Y, Tong S W, Xu X F, Ozyilmaz B and Loh K P 2011 Adv. Mater. 23 1514
|
[3] |
Park H, Brown P R, Bulovic V and Kong J 2012 Nano Lett. 12 133
|
[4] |
Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5782
|
[5] |
Jang H, Park Y J, Chen X, Das T, Kim M S and Ahn J H 2016 Adv. Mater. 28 4184
|
[6] |
Sun D M, Liu C, Ren W C and Cheng H M 2016 Adv. Electron. Mater. 2 1600229
|
[7] |
Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X and Wu D 2010 Adv. Mater. 22 2743
|
[8] |
Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y and Cao A 2013 Nano Lett. 13 1776
|
[9] |
Li X, Lv Z and Zhu H 2015 Adv. Mater. 27 6549
|
[10] |
Li X, Xie D, Park H, Zeng T H, Wang K, Wei J, Zhong M, Wu D, Kong J and Zhu H 2013 Adv. Energy Mater. 3 1029
|
[11] |
Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appleton B R and Hebard A F 2012 Nano Lett. 12 2745
|
[12] |
Kozawa D, Hiraoka K, Miyauchi Y, Mouri S and Matsuda K 2012 Appl. Phys. Express 5 042304
|
[13] |
Kang J, Shin D, Bae S and Hong B H 2012 Nanoscale 4 5527
|
[14] |
Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H and Kong J 2015 Nano Lett. 15 2104
|
[15] |
Ho P H, Liou Y T, Chuang C H, Lin S W, Tseng C Y, Wang D Y, Chen C C, Hung W Y, Wen C Y and Chen C W 2015 Adv. Mater. 27 1724
|
[16] |
Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H and Cao A 2015 ACS Appl. Mater. Inter 7 17088
|
[17] |
Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2012 Nano Lett. 12 414
|
[18] |
Cummings A W, Duong D L, Nguyen V L, Van Tuan D, Kotakoski J, Barrios Vargas J E, Lee Y H and Roche S 2014 Adv. Mater. 26 5079
|
[19] |
Li X, Xie D, Park H, Zhu M, Zeng T H, Wang K, Wei J, Wu D, Kong J and Zhu H 2013 Nanoscale 5 1945
|
[20] |
Lin X, Liu P, Wei Y, Li Q, Wang J, Wu Y, Feng C, Zhang L, Fan S and Jiang K 2013 Nat. Commun. 4 2920
|
[21] |
Yan Z, Peng Z, Casillas G, Lin J, Xiang C, Zhou H, Yang Y, Ruan G, Raji A R O, Samuel E L G, Hauge R H, Yacaman M J and Tour J M 2014 ACS Nano 8 5061
|
[22] |
Kim S H, Song W, Jung M W, Kang M A, Kim K, Chang S J, Lee S S, Lim J, Hwang J, Myung S and An K S 2014 Adv. Mater. 26 4247
|
[23] |
Kholmanov I N, Magnuson C W, Piner R, Kim J Y, Aliev A E, Tan C, Kim T Y, Zakhidov A A, Sberveglieri G, Baughman R H and Ruoff R S 2015 Adv. Mater. 27 3053
|
[24] |
Wang R, Hong T and Xu Y Q 2015 ACS Appl. Mater. Inter 7 5233
|
[25] |
Pulfrey D L 1978 IEEE Trans. Electron. Devices 25 1308
|
[26] |
Jung Y, Li X, Rajan N K, Taylor A D and Reed M A 2013 Nano Lett. 13 95
|
[27] |
Cui K, Anisimov A S, Chiba T, Fujii S, Kataura H, Nasibulin A G, Chiashi S, Kauppinen E I and Maruyama S 2014 J. Mater. Chem. A 2 11311
|
[28] |
He J, Gao P, Yang Z, Yu J, Yu W, Zhang Y, Sheng J, Ye J, Amine J C and Cui Y 2017 Adv. Mater. 29
|
[29] |
Fan Q, Zhang Q, Zhou W, Xia X, Yang F, Zhang N, Xiao S, Li K, Gu X, Xiao Z, Chen H, Wang Y, Liu H, Zhou W and Xie S 2017 Nano Energy 33 436
|
[30] |
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[31] |
Fan Q, Zhang Q, Zhou W, Yang F, Zhang N, Xiao S, Gu X, Xiao Z, Chen H, Wang Y, Liu H and Zhou W 2017 Chin. Phys. B 26 028801
|
[32] |
Shi E, Li H, Yang L, Hou J, Li Y, Li L, Cao A and Fang Y 2015 Adv. Mater. 27 682
|
[33] |
Ferrari A C and Basko D M 2013 Nat. Nanotech. 8 235
|
[34] |
Griep M H, Sandoz-Rosado E, Tumlin T M and Wetzel E 2016 Nano Lett. 16 1657
|
[35] |
Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A and Xu Y 2011 Appl. Phys. Lett. 98 133115
|
[36] |
Shi E, Li H, Xu W, Wu S, Wei J, Fang Y and Cao A 2015 Nano Energy 17 216
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|