Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044401    DOI: 10.1088/1674-1056/acb0be
RAPID COMMUNICATION Prev   Next  

Modeling of thermal conductivity for disordered carbon nanotube networks

Hao Yin(殷浩)1,†, Zhiguo Liu(刘治国)2,†, and Juekuan Yang(杨决宽)1,‡
1 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
2 The 55 th Research Institute of China Electronics Technology Group Corporation, Nanjing 210016, China
Abstract  Several theoretical models have been developed so far to predict the thermal conductivities of carbon nanotube (CNT) networks. However, these models overestimated the thermal conductivity significantly. In this paper, we claimed that a CNT network can be considered as a contact thermal resistance network. In the contact thermal resistance network, the temperature of an individual CNT is nonuniform and the intrinsic thermal resistance of CNTs can be ignored. Compared with the previous models, the model we proposed agrees well with the experimental results of single-walled CNT networks.
Keywords:  thermal conductivity      carbon nanotube networks      contact thermal resistance  
Received:  13 October 2022      Revised:  01 January 2023      Accepted manuscript online:  06 January 2023
PACS:  44.10.+i (Heat conduction)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project support by the National Natural Science Foundation of China (Grant No. 52127811) and Department of Science and Technology of Jiangsu Province, China (Grant No. BK20220032).
Corresponding Authors:  Juekuan Yang     E-mail:  yangjk@seu.edu.cn

Cite this article: 

Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽) Modeling of thermal conductivity for disordered carbon nanotube networks 2023 Chin. Phys. B 32 044401

[1] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[2] Marconnet A M, Panzer M A and Goodson K E 2013 Rev. Mod. Phys. 85 1295
[3] Prasher R S, Hu X J, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F and Keblinski P 2009 Phys. Rev. Lett. 102 105901
[4] Yang X M, Cui J X, Xue K, Fu Y, Li H L and Yang H 2021 Nanotechnol. Rev. 10 178
[5] Yamada Y, Nishiyama T, Yasuhara T and Takahashi K 2012 J. Therm. Sci. Technol. 7 190
[6] Gui X C, Wei J Q, Wang K L, Cao A Y, Zhu H W, Jia Y, Shu Q K and Wu D H 2010 Adv. Mater. 22 617
[7] Zhao X P, Huang C L, Liu Q K, Smalyukh I I and Yang R G 2018 J. Appl. Phys. 123 085103
[8] Chalopin Y, Volz S and Mingo N 2009 J. Appl. Phys. 105 084301
[9] Volkov A N and Zhigilei L V 2010 Phys. Rev. Lett. 104 215902
[10] Salaway R N and Zhigilei L V 2016 Phys. Rev. B 94 014308
[11] Varshney V, Lee J, Brown J S, Farmer B L, Voevodin A A and Roy A K 2018 Front. Mater. 5 17
[12] Yang J K, Waltermire S, Chen Y F, Zinn A A, Xu T T and Li D Y 2010 Appl. Phys. Lett. 96 023109
[13] Volkov A N and Zhigilei L V 2012 Appl. Phys. Lett. 101 043113
[14] Orgéas L, Dumont P J J, Vassal J P, Guiraud O, Michaud V and Favier D 2012 J. Mater. Sci. 47 2932
[15] Gnanasekaran K, Grimaldi C, With G D and Friedrich H 2019 Adv. Funct. Mater. 29 1807901
[16] Xi Q, Zhong J X, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J, Zhou J and Li B W 2020 Chin. Phys. Lett. 37 104401
[17] Balberg I, Anderson C H, Alexander S and Wagner N 1984 Phys. Rev. B 30 3933
[18] Rawal A 2021 Mech. Mater. 160 103901
[19] Zhou J, Xi Q, He J X, Xu X F, Nakayama T, Wang Y Y and Liu J 2020 Phys. Rev. Mater. 4 015601
[20] Aitkaliyeva A, Chen D and Shao L 2013 Sci. Rep. 3 2774
[21] Mu B K, Li X, Feng X, Li Y, Ding C, Zhao G T and Yang J K 2021 Int. J. Thermophys. 42 50
[22] Zhang H L, Li J F, Yao K F and Chen L D 2005 J. Appl. Phys. 97 114310
[1] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for the multi-segment thermal rectifier
Fu-Ye Du (杜甫烨), Wang Zhang (张望), Hui-Qiong Wang (王惠琼), Jin-Cheng Zheng (郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[2] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅), Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[3] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principlesand machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红), Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[4] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[5] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[6] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[10] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[11] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[12] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[13] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[14] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[15] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
No Suggested Reading articles found!