Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047503    DOI: 10.1088/1674-1056/ac946b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes

Jia-Jun Mo(莫家俊)1, Pu-Yue Xia(夏溥越)1, Ji-Yu Shen(沈纪宇)1, Hai-Wen Chen(陈海文)2, Ze-Yi Lu(陆泽一)1, Shi-Yu Xu(徐诗语)1, Qing-Hang Zhang(张庆航)1, Yan-Fang Xia(夏艳芳)1,†, and Min Liu(刘敏)1,‡
1 College of Nuclear Science and Technology, University of South China, Hengyang 421001, China;
2 College of Energy, Xiamen University, Xiamen 361005, China
Abstract  This work examines the origin of the abnormal magnetism exhibited by CuMnFe-PBAs modified with multi-walled carbon nanotubes (MWCNTs). The system of CuMnFe-PBAs@MWCNTs coexists with both large and small clusters. CuMnFe-PBAs clusters have an average particle size of 28 nm, and some of the smaller particles are adsorbed on the surface of MWCNTs. Surprisingly, the magnitude of magnetization increases linearly with decreasing temperature. When above the Curie temperature, the magnitude of magnetization is significantly greater than that of PBAs without being modified. This phenomenon can be attributed to magnetostatic interactions between ultra-fine magnetic nanoparticles adsorbed on the surface of MWCNTs. Using the Monte Carlo method, we simulated the magnetostatic interaction of cylindrical adsorbed particles, and the simulation results are almost identical to those observed experimentally. The results indicate that 0.089 CuMnFe-PBAs clusters per 1 nm2 can be adsorbed onto the surface area of MWCNTs. We demonstrate that MWCNTs adsorbing magnetic particles exhibit magnetic behavior, and suggest a method for producing ultrafine materials. It also introduces a new method of calculating the adsorption efficiency of carbon nanotubes, offering theoretical guidance for future research on nanomaterials with enhanced adsorption efficiency.
Keywords:  multi-walled carbon nanotubes      prussian blue analogue      Monte Carlo simulation      magnetostatic interaction  
Received:  26 July 2022      Revised:  21 September 2022      Accepted manuscript online:  23 September 2022
PACS:  75.50.-y (Studies of specific magnetic materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  76.80.+y (M?ssbauer effect; other γ-ray spectroscopy)  
  02.70.Uu (Applications of Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447231 and 12105137), the National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China, the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4517), the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 19A434, 19A433, and 19C1621), and the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China (Grant Nos. 2019KFY10 and 2019KFY09).
Corresponding Authors:  Yan-Fang Xia, Min Liu     E-mail:  xiayfusc@126.com;liuhart@126.com

Cite this article: 

Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), and Min Liu(刘敏) Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes 2023 Chin. Phys. B 32 047503

[1] Kunadian I, Andrews R, Mengüç M P and Qian D 2009 Carbon 47 589
[2] Kunadian I, Andrews R, Qian D and Mengüç M P 2009 Carbon 47 384
[3] Chen M L, Zhang F J and Oh W C 2009 New Carbon Mater. 24 159
[4] Ramirez A P, Haddon R C, Zhou O, Fleming R M, Zhang, J, McClure S M and Smalley R E 1994 Science 265 84
[5] Heremans J, Olk C H and Morelli D T 1994 Phys. Rev. B 49 15122
[6] Likodimos V, Glenis S, Guskos N and Lin C L 2003 Phys. Rev. B 68 045417
[7] Chang L W and Lue J T 2009 J. Nanosci. Nanotechnol. 9 1956
[8] Husmann S, Nossol E and Zarbin A J G 2014 Sensor Actuat. B-Chem. 192 782
[9] Gupta R and Singh B 2019 J. Mater. Sci: Mater. El. 30 11888
[10] Kechrakos D and Trohidou K N 2003 J. Magn. Magn. Mater. 262 107
[11] Ksenofontov V, Levchenko G, Reiman S, Gütlich P, Bleuzen A, Escax V and Verdaguer M 2003 Phy. Rev. B 68 024415
[12] Moritomo Y and Shibata T 2009 Appl. Phys. Lett. 94 043502
[13] Liu M, Lu Z, Ding X, Chen H, Guo Z, Hu S and Xiao J 2020 Chem. Phys. Lett. 754 137641
[14] Goujon A, Varret F, Escax V, Bleuzen A and Verdaguer M 2001 Polyhedron 20 1347
[15] Martinez-Garcia R, Knobel M and Reguera E 2006 J. Phys. Chem. B 110 7296
[16] Tokoro H and Ohkoshi S I 2013 Handbook of Nano-Optics and Nanophotonics p. 693
[17] Shimamoto N, Ohkoshi S I, Sato O and Hashimoto K 2002 Inorg. Chem. 41 678
[18] Yusuf S M, Kumar A and Yakhmi J V 2010 J. Phys.: Conf. Ser. 200 022073
[19] Yusuf S M, Kumar A and Yakhmi J V 2009 App. Phys. Lett. 95 182506
[20] Lahiri D, Choi Y, Yusuf S M, Kumar A, Ramanan N, Chattopadhyay S and Sharma S M 2016 Mater. Res. Express 3 036101
[21] Zhang W, Wei X, Zhang X, Huo S, Gong A, Mo X and Li K 2022 Sep. Purif. Technol. 287 120483
[22] Gao F, Zou J, Zhong W, Tu X, Huang X, Yu, Y and Bai L 2020 Nanotechnology 32 085501
[23] Li J, Qiu J D, Xu J J, Chen H Y and Xia X H 2007 Adv. Funct. Mater. 17 1574
[24] Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J and Brown N M D 2005 Carbon 43 153
[25] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[26] Chattopadhyay S, Jana S, Giri S and Majumdar S 2012 J. Phys.: Condens. Mater 24 436005
[27] Mitra A, Mahapatra A S, Mallick A and Chakrabarti P K 2017 J. Magn. Magn. Mater. 435 117
[28] Rondinone A J, Samia A C and Zhang Z J 1999 J. Phys. Chem. B 103 6876
[29] Binns C, Maher M J, Pankhurst Q A, Kechrakos D and Trohidou K N 2002 Phy. Rev. B 66 184413
[30] Iannotti V, Adamiano A, Ausanio G, Lanotte L, Aquilanti G, Coey J M D and Tampieri A 2017 Inorg. Chem. 56 4446
[31] Nedelkoski Z, Kepaptsoglou D, Lari L, Wen T, Booth R A Oberdick, S D and Lazarov V K 2017 Sci. Rep. 7 45997
[32] Mo J, Xia P, Zhang Q, et al. 2022 Phy. Rev. B 105 094411
[33] Mo J, Zhang Q, Chen Y, Liu L, Xia P, Yang J and Liu M 2022 J. Supercond. Nov. Magn. 35 1207
[34] Zhang Q, Mo J, Xie Y, Xia Y and Liu M 2022 Phase Transit. 95 345
[1] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[2] Effects of O2 adsorption on secondary electron emission properties
Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2023, 32(4): 047901.
[3] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[4] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[5] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[6] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[7] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[10] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[11] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[12] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[13] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[14] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[15] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
No Suggested Reading articles found!