INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells |
Yuancong Zhong(钟远聪)1,2, Qilun Zhang(张琪伦)1, You Wei(魏优)1, Qi Li(李琦)1, Yong Zhang(章勇)1 |
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631, China; 2 School of Physics and Optical Information Technology, Jiaying University, Meizhou 514015, China |
|
|
Abstract The morphology of the copper iodide (CuI) film as an inorganic p-type material has an important influence on enhancing the performance of polymer solar cells (PSCs). A self-assembled monolayer of 3-aminopropanoic acid (C3-SAM) was used on the surface of indium tin oxide (ITO) before depositing the CuI films. Consequently, a well-distributed and smooth CuI film was formed with pinhole free and complete surface coverage. The root mean square of the corresponding CuI film was reduced from 3.63 nm for ITO/CuI to 0.77 nm. As a result, the average power conversion efficiency (PCE) of PSCs with the device structure of ITO/C3-SAM/CuI/P3HT:PC61BM/ZnO/Al increased significantly from 2.55% (best 2.66%) to 3.04% (best 3.20%) after C3-SAM treatment. This work provides an effective strategy to control the morphology of CuI films through interfacial modification and promotes its application in efficient PSCs.
|
Received: 07 March 2018
Revised: 01 May 2018
Accepted manuscript online:
|
PACS:
|
88.40.jr
|
(Organic photovoltaics)
|
|
72.80.Jc
|
(Other crystalline inorganic semiconductors)
|
|
81.16.Dn
|
(Self-assembly)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377065 and 61574064), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013CB040402009 and 2015B010132009), and the Science and Technology Project of Guangzhou City, China (Grant No. 2014J4100056). |
Corresponding Authors:
Yong Zhang
E-mail: zycq@scnu.edu.cn
|
Cite this article:
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇) Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells 2018 Chin. Phys. B 27 078802
|
[1] |
Brabec C J, Gowrisanker S, Halls J J M, Laird D, Jia S J and Williams S P 2010 Adv. Mater. 22 3839
|
[2] |
Kaltenbrunner M, White M S, Glowacki E D, Sekitani T, Someya T, Sariciftci N S and Bauer S 2012 Nat. Commun. 3 1
|
[3] |
Li G, Zhu R and Yang Y 2012 Nat. Photon. 6 153
|
[4] |
Zhang G G, Zhang K, Yin Q W, Jiang X F, Wang Z Y, Xin J M, Ma W, Yan H, Huang F and Cao Y 2017 J. Am. Chem. Soc. 139 2387
|
[5] |
Wang J, Fei F, Luo Q, Nie S H, Wu N, Chen X L, Su W M, Li Y J and Ma C Q 2017 Acs Appl. Mater. Inter. 9 7834
|
[6] |
Kim Y H, Spiegel D, Hotta S and Heeger A J 1988 Phys. Rev. B 38 5490
|
[7] |
Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y, Li G, Ray C and Yu L P 2010 Adv. Mater. 22 E135
|
[8] |
Zhang L J, He C, Chen J W, Yuan P, Huang L A, Zhang C, Cai W Z, Liu Z T and Cao Y 2010 Macromolecules 43 9771
|
[9] |
Jia X P, Wu N, Wei J F, Zhang L P, Luo Q, Bao Z M, Li Y Q, Yang Y Z, Liu X G and Ma C Q 2016 Org. Electron. 38 150
|
[10] |
Arias A C, Granström M, Thomas D S, Petritsch K and Friend R H 1999 Phys. Rev. B 60 1854
|
[11] |
Smith C T G, Rhodes R W, Beliatis M J, Jayawardena K D G I, Rozanski L J, Mills C A and Silva S R P 2014 Appl. Phys. Lett. 105 073304
|
[12] |
Wang T H, Chen C B, Guo K P, Chen G, Xu T and Wei B 2016 Chin. Phys. B 25 038402
|
[13] |
Ahmadi M, Dafeh S R, Ghazanfarpour S and Khanzadeh M 2017 Chin. Phys. B 26 097203
|
[14] |
Zhao W C, Li S S, Zhang S Q, Liu X Y and Hou J H 2017 Adv. Mater. 29 1604059
|
[15] |
Li S S, Ye L, Zhao W C, Zhang S Q, Mukherjee S, Ade H and Hou J H 2016 Adv. Mater. 28 9423
|
[16] |
Zhao F W, Dai S X, Wu Y, Zhang Q Q, Wang J Y, Jiang L, Ling Q D, Wei Z X, Ma W, You W, Wang C R and Zhan X W 2017 Adv. Mater. 29 1700144
|
[17] |
Yan H, Lee P, Armstrong N R, Graham A, Evmenenko G A, Dutta P and Marks T J 2005 J. Am. Chem. Soc. 127 3172
|
[18] |
Jorgensen M, Norrman K and Krebs F C 2008 Sol. Energ. Mat. Sol. C 92 686
|
[19] |
Jin R, Levermore P A, Huang J S, Wang X H, Bradley D D C and Demello J C 2009 Phys. Chem. Chem. Phys. 11 3455
|
[20] |
Hsu C C, Su H W, Hou C H, Shyue J J and Tsai F Y 2015 Nanotechnology 26 385
|
[21] |
Rafique S, Abdullah S M, Mahmoud W E, Al-Ghamdi A A and Sulaiman K 2016 Rsc Adv. 6 50043
|
[22] |
Zhang J, Wang J T, Fu Y Y, Zhang B H and Xie Z Y 2015 Rsc Adv. 5 28786
|
[23] |
Chaudhary N, Chaudhary R, Kesari J P, Patra A and Chand S 2015 J. Mater. Chem. C 3 11886
|
[24] |
Shao S Y, Liu J, Zhang J D, Zhang B H, Xie Z Y, Geng Y H and Wang L X 2012 Acs Appl. Mater. Inter. 4 5704
|
[25] |
Sun W H, Peng H T, Li Y L, Yan W B, Liu Z W, Bian Z Q and Huang C H 2014 J. Phys. Chem. C 118 16806
|
[26] |
Das S, Choi J Y and Alford T L 2015 Sol. Energy Mat. Sol. Cells 133 255
|
[27] |
Mohamed S A, Gasiorowski J, Hingerl K, Zahn D R T, Scharber M C, Obayya S S A, El-Mansy M K, Sariciftci N S, Egbe D A M and Stadler P 2015 Sol. Energy Mat. Sol. Cells 143 369
|
[28] |
Peng Y, Yaacobi-Gross X, Perumal A K, Faber H A, Vourlias G, Patsalas P A, D D C Bradley D C C, He Z and Anthopoulos T D 2015 Appl. Phys. Lett. 106 243302
|
[29] |
Zhao K, Ndjawa G O N, Jagadamma L K, Labban A E, Hu H, Wang Q, Li R, Abdelsamie M, Beaujuge P M and Amassian A 2015 Nano Energy 16 458
|
[30] |
Yoon S, Kim H, Shin E Y, Bae I G, Park B, Noh Y Y and Hwang I 2016 Org. Electron. 32 200
|
[31] |
Yoon S, Kim H, Shin E Y, Noh Y Y, Park B and Hwang I 2016 Phys. Status. Solidi. A 213 2431
|
[32] |
Patterson A L 1939 Phys. Rev. 56 978
|
[33] |
Surajkumar Singh N, Dorendrajit Singh S, Dhiren Meetei S 2014 Chin. Phys. B 23 058104
|
[34] |
Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y and Chen H Z 2015 J. Am. Chem. Soc. 137 2674
|
[35] |
Gu Z W, Zuo L J, Larsen-Olsen T T, Ye T, Wu G, Krebs F C and Chen H Z 2015 J. Mater. Chem. A 3 24254
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|