CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well |
Ling Sun(孙令)1,2, Lu Wang(王禄)1, Jin-Lei Lu(鲁金蕾)1,2, Jie Liu(刘洁)1,2, Jun Fang(方俊)1,2, Li-Li Xie(谢莉莉)3, Zhi-Biao Hao(郝智彪)3, Hai-Qiang Jia(贾海强)1, Wen-Xin Wang(王文新)1, Hong Chen(陈弘)1 |
1. Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract Here in this paper, we report a room-temperature operating infrared photodetector based on the interband transition of an InAsSb/GaSb quantum well. The interband transition energy of 5-nm thick InAs0.91Sb0.09 embedded in the GaSb barrier is calculated to be 0.53 eV (2.35 μm), which makes the absorption range of InAsSb cover an entire range from short-wavelength infrared to long-wavelength infrared spectrum. The fabricated photodetector exhibits a narrow response range from 2.0 μm to 2.3 μm with a peak around 2.1 μm at 300 K. The peak responsivity is 0.4 A/W under -500 -mV applied bias voltage, corresponding to a peak quantum efficiency of 23.8% in the case without any anti-reflection coating. At 300 K, the photodetector exhibits a dark current density of 6.05×10-3 A/cm2 under -400-mV applied bias voltage and 3.25×10-5 A/cm2 under zero, separately. The peak detectivity is 6.91×1010 cm·Hz1/2/W under zero bias voltage at 300 K.
|
Received: 17 December 2017
Revised: 01 February 2018
Accepted manuscript online:
|
PACS:
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
81.07.St
|
(Quantum wells)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574362). |
Corresponding Authors:
Hong Chen
E-mail: hchen@iphy.ac.cn
|
Cite this article:
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘) Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well 2018 Chin. Phys. B 27 047209
|
[1] |
Levine B F 1993 J. Appl. Phys. 74 R1
|
[2] |
Norton P 2002 Opto-Electron. Rev. 10 159
|
[3] |
Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514
|
[4] |
Rogalski A 2009 Acta Physica Polonica A 116 389
|
[5] |
Rogalski A 2003 Prog. Quantum Electron. 27 59
|
[6] |
Rogalski A 2011 Infrared Phys. Technol. 54 136
|
[7] |
Piotrowski J and Rogalski A 2004 Infrared Phys. Technol. 46 115
|
[8] |
Piotrowski J, Galus W and Grudzien M 1991 Infrared Phys. 31 1
|
[9] |
Jiang L, Li S S, Yeh N T, Chyi J I, Ross C E and Jones K S 2003 Appl. Phys. Lett. 82 1986
|
[10] |
Bhattacharya P, Su X H, Chakrabarti S, Ariyawansa G and Perera A G U 2005 Appl. Phys. Lett. 86 191106
|
[11] |
Haddadi A, Chevallier R, Dehzangi A and Razeghi M 2017 Appl. Phys. Lett. 110 101104
|
[12] |
Karimi M, Jain V, Heurlin M, Nowzari A, Hussain L, Lindgren D, Stehr J E, Buyanova I A, Gustafsson A, Samuelson L, Borgstrom M T and Pettersson H 2017 Nano Lett. 17 3356
|
[13] |
Madejczyk P, Gawron W, Piotrowski A, Klos K, Rutkowski J and Rogalski A 2011 Infrared Phys. Technol. 54 310
|
[14] |
Piotrowski A, Madejczyk P, Gawron W, Klos K, Pawluczyk J, Rutkowski J, Piotrowski J and Rogalski A 2007 Infrared Phys. Technol. 49 173
|
[15] |
Martyniuk P, Kozniewski A, Keblowski A, Gawron W and Rogalski A 2014 Opto-Electron. Rev. 22 118
|
[16] |
Rogalski A 2005 Rep. Prog. Phys. 68 2267
|
[17] |
Maimon S and Wicks G W 2006 Appl. Phys. Lett. 89 151109
|
[18] |
Baril N, Brown A, Maloney P, Tidrow M, Lubyshev D, Qui Y, Fastenau J M, Liu A W K and Bandara S 2016 Appl. Phys. Lett. 109 122104
|
[19] |
Kopytko M, Wrobel J, Jozwikowski K, Rogalski A, Antoszewski J, Akhavan N D, Umana-Membreno G A, Faraone L and Becker C R 2015 J. Electron. Mater. 44 158
|
[20] |
Kopytko M 2014 Infrared Phys. Technol. 64 47
|
[21] |
Gautam N, Myers S, Barve A V, Klein B, Smith E P, Rhiger D R, Dawson L R and Krishna S 2012 Appl. Phys. Lett. 101 021106
|
[22] |
Martyniuk P and Rogalski A 2013 Opto-Electron. Rev. 21 239
|
[23] |
Lao Y F, Perera A G U, Li L H, Khanna S P, Linfield E H and Liu H C 2014 Nat. Photon. 8 412
|
[24] |
Wang W, Wang L, Jiang Y, Ma Z, Sun L, Liu J, Sun Q, Zhao B, Wang W, Liu W, Jia H and Chen H 2016 Chin. Phys. B 25 097307
|
[25] |
Yang H, Ma Z, Jiang Y, Wu H, Zuo P, Zhao B, Jia H and Chen H 2017 Sci. Rep. 7 43357
|
[26] |
Sun Q L, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Wang W X, Jia H Q, Zhou J M and Chen H 2016 Chin. Phys. Lett. 33 106801
|
[27] |
Liu J, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Jia H Q, Wang W X and Chen H 2017 Journal of Infrared and Millimeter Waves 36 129
|
[28] |
Woolley J C and Warner J 1964 Can. J. Phys. 42 1879
|
[29] |
Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X, Jia H Q, Zhou J M and Chen H 2015 Chin. Phys. Lett. 32 106801
|
[30] |
Walther M, Schmitz J, Rehm R, Kopta S, Fuchs F, Fleissner J, Cabanski W and Ziegler J 2005 J. Cryst. Growth 278 156
|
[31] |
Tennant W E, Lee D, Zandian M, Piquette E and Carmody M 2008 J. Electron. Mater. 37 1406
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|