CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of depositing PCBM on perovskite-based metal-oxide-semiconductor field effect transistors |
Su-Zhen Luan(栾苏珍)1, Yu-Cheng Wang(汪钰成)2, Yin-Tao Liu(刘银涛)2, Ren-Xu Jia(贾仁需)2 |
1. School of Electronic Engineering, Xidian University, Xi'an 710071, China; 2. School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract In this manuscript, the perovskite-based metal-oxide-semiconductor field effect transistors (MOSFETs) with phenyl-C61-butyric acid methylester (PCBM) layers are studied. The MOSFETs are fabricated on perovskites, and characterized by photoluminescence spectra (PL), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). With PCBM layers, the current-voltage hysteresis phenomenon is effetely inhibited, and both the transfer and output current values increase. The band energy diagrams are proposed, which indicate that the electrons are transferred into the PCBM layer, resulting in the increase of photocurrent. The electron mobility and hole mobility are extracted from the transfer curves, which are about one order of magnitude as large as those of PCBM deposited, which is the reason why the electrons are transferred into the PCBM layer and the holes are still in the perovskites, and the effects of ionized impurity scattering on carrier transport become smaller.
|
Received: 14 December 2017
Revised: 04 January 2018
Accepted manuscript online:
|
PACS:
|
72.40.+w
|
(Photoconduction and photovoltaic effects)
|
|
78.55.Kz
|
(Solid organic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51602241) and the China Postdoctoral Science Foundation (Grant No. 2016M592754). |
Corresponding Authors:
Ren-Xu Jia
E-mail: rxjia@mail.xidian.edu.cn
|
Cite this article:
Su-Zhen Luan(栾苏珍), Yu-Cheng Wang(汪钰成), Yin-Tao Liu(刘银涛), Ren-Xu Jia(贾仁需) Effect of depositing PCBM on perovskite-based metal-oxide-semiconductor field effect transistors 2018 Chin. Phys. B 27 047208
|
[1] |
Noel N K, Habisreutinger S N, Wenger B, Klug M T, Hörantner M T, Johnston M B, Nicholas R J, Moore D T and Snaith H J 2017 Energy Environ. Sci. 10 145
|
[2] |
Ma F, Li J, Li W, Lin N, Wang L and Qiao J 2017 Chem. Sci. 8 800
|
[3] |
Liu K, Yao Y, Wang J, Zhu L, Sun M, Ren B, Xie L, Luo Y, Meng Q and Zhan X 2017 Mater. Chem. Front. 1 100
|
[4] |
Zhuang S W, Xu J X, Wu B, Zhang Y T, Dong X, Li G X, Zhang B L and Du G T 2017 Chin. Phys. B 26 017802
|
[5] |
Erum N and Iqbal M A 2017 Chin. Phys. B 26 047102
|
[6] |
Qin T, Huang W, Kim J E, Vak D, Forsyth C, McNeill C R and Cheng Y B 2017 Nano Energy 31 210
|
[7] |
Zhu H, Trinh M T, Wang J, Fu Y, Joshi P P, Miyata K, Jin S and Zhu X Y 2017 Adv. Mater. 29 1603072
|
[8] |
Yang I S, Sohn M R, Sung S D, Kim Y J, Yoo Y J, Kim J and Lee W I 2017 Nano Energy 32 414
|
[9] |
Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Gratzel M 2016 Energy Environ. Sci. 9 1989
|
[10] |
Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
|
[11] |
Heo J H, Song D H and Im S H 2014 Adv. Mater. 26 8179
|
[12] |
Jung H S and Park N G 2015 Small 11 10
|
[13] |
Liu X, Wang C, Lyu L, Wang C, Xiao Z, Bi C, Huang J and Gao Y 2015 Phys. Chem. Chem. Phys. 17 896
|
[14] |
Saidaminov M I, Adinolfi V, Comin R, Abdelhady A L, Peng W, Dursun I, Yuan M, Hoogland S, Sargent E H and Bakr O M 2015 Nat. Commun. 6 8724
|
[15] |
Chen J, Zhou S, Jin S, Li H and Zhai T 2016 J. Mater. Chem. C 4 11
|
[16] |
Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S and Lee J S 2016 Chem. Commun. (Camb) 52 2067
|
[17] |
Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
|
[18] |
Liang Y, Yao Y, Zhang X, Hsu W L, Gong Y, Shin J, Wachsman E D, Dagenais M and Takeuchi I 2016 AIP Adv. 6 015001
|
[19] |
Liu Y T, Jia R X, Wang Y C, Hu Z Y, Zhang Y M, Pang T Q, Zhu Y J and and Luan S Z 2017 ACS Appl. Mater. Inter. 9 15638
|
[20] |
Yang D, Ming W, Shi H, Zhang L and Du M H 2016 Chem. Mater. 28 4349
|
[21] |
Chen B, Yang M, Zheng X, Wu C, Li W, Yan Y, Bisquert J, Garcia-Belmonte G, Zhu K and Priya S 2015 J. Phys. Chem. Lett. 6 4693
|
[22] |
Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A and Islam M S 2015 Nat. Commun. 6 7497
|
[23] |
Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P and Sargent E H 2015 Nat. Commun. 6 7081
|
[24] |
Liu X, Yu H, Yan L, Dong Q, Wan Q, Zhou Y, Song B and Li Y 2015 ACS Appl. Mater. Inter. 7 6230
|
[25] |
Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C and Hsu Y J 2014 Adv. Mater. 26 4107
|
[26] |
Bai Y, Yu H, Zhu Z, Jiang K, Zhang T, Zhao N, Yang S and Yan H 2015 J. Mater. Chem. A 3 9098
|
[27] |
Chin X Y, Cortecchia D, Yin J, Bruno A and Soci C 2015 Nat. Commun. 6 7383
|
[28] |
Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J and Li Y 2015 Nano Lett. 15 2756
|
[29] |
Labram J G, Fabini D H, Perry E E, Lehner A J, Wang H, Glaudell A M, Wu G, Evans H, Buck D, Cotta R, Echegoyen L, Wudl F, Seshadri R and Chabinyc M L 2015 J. Phys. Chem. Lett. 6 3565
|
[30] |
Adhikari N, Dubey A, Khatiwada D, Mitul A F, Wang Q, Venkatesan S, Iefanova A, Zai J, Qian X, Kumar M and Qiao Q 2015 ACS Appl. Mater. Inter. 7 26445
|
[31] |
Kumar G R, Savariraj A D, Karthick S N, Selvam S, Balamuralitharan B, Kim H J, Viswanathan K Vijaykumar K M and Prabakar K 2016 Phys. Chem. Chem. Phys. 18 7284
|
[32] |
Liu D, Yang J and Kelly T L 2014 J. Am. Chem. Soc. 136 17116
|
[33] |
Trifiletti V, Roiati V, Colella S, Giannuzzi R, Marco L D, Rizzo A, Manca M, Listorti A and Gigli G 2015 ACS Appl. Mater. Inter. 7 4283
|
[34] |
Kim S S, Bae S and Jo W H 2015 Chem. Commun. 51 17413
|
[35] |
Li F, Ma C, Wang H, Hu W, Yu W, Sheikh A D and Wu T 2015 Nat. Commun. 6 8238
|
[36] |
Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y and Huang J 2014 Appl. Phys. Lett. 105 163508
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|