Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037406    DOI: 10.1088/1674-1056/ac43b1

Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides

Dong Yan(严冬)1,5,†, Lingyong Zeng(曾令勇)1,†, Yijie Zeng(曾宜杰)2,6, Yishi Lin(林一石)3,4, Junjie Yin(殷俊杰)2, Meng Wang(王猛)2, Yihua Wang(王熠华)3,4, Daoxin Yao(姚道新)2, and Huixia Luo(罗惠霞)1,‡
1 School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key aboratory of Polymer Composite&Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510275, China;
2 Center for Neuron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
3 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
4 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China;
5 Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China;
6 College of Science, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  The relationship between charge-density-wave (CDW) and superconductivity (SC), two vital physical phases in condensed matter physics, has always been the focus of scientists' research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr$_{2-x}$Al$_{x}$Te$_{4}$ ($0 \leqslant x \leqslant 0.2$). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature ($T_{\rm c}$) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when $x=0.075$. The value of normalized specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the highest $T_{\rm c}$ sample CuIr$_{1.925}$Al$_{0.075}$Te$_{4}$ was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states, we propose a phase diagram of $T_{\rm c}$ vs. doping content.
Keywords:  layered telluride chalcogenide      superconductivity      charge-density-wave      CuIr2-xAlxTe4  
Received:  16 November 2021      Revised:  10 December 2021      Accepted manuscript online:  16 December 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.-q (Properties of superconductors)  
  74.25.Dw (Superconductivity phase diagrams)  
  71.45.Lr (Charge-density-wave systems)  
Fund: H. X. Luo acknowledges the financial support by the National Natural Science Foundation of China (Grant No. 11922415), Guangdong Basic and Applied Basic Research Foundation, China (Grants No. 2019A1515011718), and the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001). Y. Zeng and D. X. Yao are supported by the National Natural Science Foundation of China (Grants No. 11974432) and the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203). D. Yan acknowledges the financial support by the National Key Laboratory Development Fund (No. 20190030). Y. H. Wang would like to acknowledge partial support by the National Key R&D Program of China (Grant No. 2017YFA0303000), National Natural Science Foundation of China (Grant No. 11827805), and Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01). M. Wang was supported by the National Natural Science Foundation of China (Grant Nos. 11904414 and 12174454) and the National Key R&D Program of China (Grant No. 2019YFA0705702).
Corresponding Authors:  Huixia Luo     E-mail:

Cite this article: 

Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞) Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides 2022 Chin. Phys. B 31 037406

[1] Doan P, Gooch M, Tang Z J, Lorenz B, Möller A, Tapp J, Chu P C W and Guloy A M 2012 J. Am. Chem. Soc. 134 16520
[2] Mososan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klilmczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[3] Shen B, Du F, Li R, Thamizhavel A, Smidman M, Nie Z Y, Luo S S, Le T, Hossain Z and Yuan H Q 2020 Phys. Rev. B 101 144501
[4] Fang L, Wang Y, Zou P Y, Tang L, Xu Z, Chen H, Dong C, Shan L and Wen H H 2005 Phys. Rev. B 72 014534
[5] Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L and Bi J Q 1987 Chin. Sci. Bull. 32 412
[6] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Guo L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908
[7] Sasmal K, Lv B, Lorenz B, Guloy A M, Guloy F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007
[8] Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C and Davis J C 2010 Science 327 181
[9] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[10] Mao Y Y, Li J, Huang Y L, Yuan J, Li Z A, Chai K, Ma M W, Ni S L, Tian J P, Liu S B, Zhou H X, Zhou F, Li J Q, Zhang G M, Jin K, Dong X L and Zhao Z X 2018 Chin. Phys. Lett. 35 057402
[11] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
[12] Dong X L, Jin K, Yuan J, Zhou F, Zhang G M and Zhan Z X 2018 Acta Phys. Sin. 67 207410 (in Chinese)
[13] Hong X C, Wang A F, Zhang Z, Pan J, He L P, Luo X G, Chen X H and Li S Y 2015 Chin. Phys. Lett. 32 127403
[14] Joe Y I, Chen X M, Ghaemi P, Finkelstein K D, de la Pena G A, Gan Y, Lee J C T, Yuan S, Geck J, MacDougall G J, Chiang T C, Cooper S L, Fradkin E and Abbamonte P 2014 Nat. Phys. 10 421
[15] Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H and Luo H X 2019 Supercond. Sci. Technol. 32 085008
[16] Luo H X, Xie W W, Tao J, Inoue H, Gyenis A, Krizan J W, Yazdani A, Zhu Y M and Cava R J 2015 Proc. Natl. Acad. Sci. USA 112 E1174
[17] Liu Y, Bao J J, Xu C Q, Jiao W H, Zhang H, Xu C L, Zhu Z, Yang H Y, Zhou Y H, Ren Z, Biswas P K, Ghosh S K, Yang Z, Ke X, Cao G H and Xu X F 2021 Phys. Rev. B 104 104418
[18] Xing Y, Yang P, Ge J, Yan J J, Luo J W, Ji H R, Yang Z Y, Li Y J, Wang Z J, Liu Y Z, Yang F, Qiu P, Xi C Y, Tian M L, Liu Y, Lin X and Wang J 2021 Nano Lett. 21 7486
[19] Xing Y, Zhao K, Shan P J, Zheng F P, Zhang Y W, Fu H L, Liu Y, Tian M L, Xi C Y, Liu H W, Feng J, Lin X, Ji S H, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802
[20] Li X Q, Li Z L, Zhao J J and Wu X S 2020 Chin. Phys. B 29 87402
[21] Simchi H 2020 Chin. Phys. B 29 27401
[22] Qi Y P, Naumov P G, Ali M N, et al. 2016 Nat. Commun. 7 11038
[23] Chen P, Pa W W, Chan Y H, Takayama A, Xu C Z, Karn A, Hasegawa S, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2017 Nat. Commun. 8 516
[24] Zhou M H, Li X C and Dong C 2018 Supercond. Sci. Technol. 31 065001
[25] Luo H X, Xie W W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y M and Cava R J 2016 Chem. Mater. 28 1927
[26] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
[27] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwase Y 2012 Science 338 1193
[28] Kusmartseva A F, Sipos B, Berger H, Forró L and Tutiš E 2009 Phys. Rev. Lett. 103 236401
[29] Fang L, Wang Y, Zou P Y, Tang L, Xu Z, Chen H, Dong C, Shan L and Wen H H 2005 Phys. Rev. B 72 014534
[30] Hu W Z, Li G, Yan J, Wen H H, Wu G, Chen X H and Wang N L 2007 Phys. Rev. B 76 045103
[31] Yan D, Wang S, Lin Y S, Wang G H, Zeng Y J, Boubeche M, He Y, Ma J, Wang Y H, Yao D X Luo H X 2020 J. Phys.:Condens. Matter 32 025702
[32] Kiswandhi A, Brooks J S, Cao H B, Yan J Q, Mandrus D, Jiang Z and Zhou H D 2013 Phys. Rev. B 87 121107(R)
[33] Zeng J W, Liu E F, Fu Y J, et al. 2018 Nano Lett. 18 1410
[34] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y M, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J 2008 Phys. Rev. B 78 104520
[35] Pan X C, Chen X L, Liu H M, Feng Y Q, Wei Z X, Zhou Y H, Chi Z H, Pi L, Yen F, Song F Q, Wan X G, Yang Z R, Wang B G and Zhang Y H 2015 Nat. Commun. 6 7805
[36] Yu Y J, Yang F Y, Lu X F, Yan Y J, Cho Y H, Ma L G, Niu X H, Kim S, Son Y W, Feng D L, Li S Y, Cheong S W, Chen X H and Zhang Y B 2015 Nat. Nanotech. 10 270
[37] Luo J W, Li Y A, Zhang J W, Ji H R, Wang H, Shan J Y, Zhang G X, Cai C, Liu J, Wang Y, Zhang Y and Wang J 2020 Phys. Rev. B 102 064502
[38] Li Y A, Gu Q Q, Chen C, Zhang J, Liu Q, Hu X Y, Liu J, Liu Y, Ling L S, Tian M L, Wang Y, Samarth N, Li S Y, Zhang T, Feng J and Wang J 2018 Proc. Natl. Acad. Sci. USA 115 9503
[39] Yan D, Zeng Y J, Wang G H, Liu Y Y, Yin J J, Chang T R, Liu H, Wang M, Ma J, Jia S, Yao D X and Luo H X 2019 arXiv:1908.05438
[40] Yan D, Zeng L Y, Lin Y S, Yin J J, He Y, Zhang X, Huang M L, Shen B, Wang M, Wang Y H, Yao D X and Luo H X 2019 Phys. Rev. B 100 174504
[41] Zeng L Y, Yan D, He Y Y, Boubeche M, Huang Y H, Wang X P and Luo H X 2021 J. Alloys Compd. 885 160981
[42] Boubeche M, Yu J, Li C S, Wang H C, Zeng L Y, He Y Y, Wang X P, Su W Z, Wang M, Yao D X and Luo H X 2021 Chin. Phys. Lett. 38 037401
[43] Boubeche M, Wang N N, Sun J P, Yang P T, Zeng L Y, Li Q Z, He Y Y, Luo S J, Cheng J G, Peng Y Y and Luo H X 2021 Supercond. Sci. Tech. 34 115003
[44] Antal V, Kanuchova M, Šefčiková, M, Kovac J, Diko P, Eisterer M, Hörhager N, Zehetmayer M, Weber H W and Chaud X 2009 Supercond. Sci. Technol. 22 105001
[45] Scavini B, Malavasi L and Mollica L 2004 Solid. State. Sci. 6 1187
[46] Ansari I 2017 J. Mod. Mater. 3 33
[47] Ginzburg V L 1955 Nuovo. Cim. 2 1234
[48] McMillan W L 1968 Phys. Rev. B 167 331
[49] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[11] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[12] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[13] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[14] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!