Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 016102    DOI: 10.1088/1674-1056/aca14a
RAPID COMMUNICATION Prev   Next  

Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions

Qin Wang(汪琴)1,2,#, Jie Zhang(张杰)1,2,#, Jierui Huang(黄杰瑞)1,2,#, Jinan Shi(时金安)1, Shuai Zhang(张帅)2, Hui Guo(郭辉)2, Li Huang(黄立)2, Hong Ding(丁洪)2,3,4, Wu Zhou(周武)1,3, Yan-Fang Zhang(张艳芳)1,†, Xiao Lin(林晓)1,3,‡, Shixuan Du(杜世萱)2,1,3,4,§, and Hong-Jun Gao(高鸿钧)2,1,3,4,¶
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Center for Excellent in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Two-dimensional honeycomb lattices show great potential in the realization of Dirac nodal line fermions (DNLFs). Here, we successfully synthesized a gold telluride (AuTe) monolayer by direct tellurizing an Au(111) substrate. Low energy electron diffraction measurements reveal that it is (2×2) AuTe layer stacked onto (3×3) Au(111) substrate. Moreover, scanning tunneling microscopy images show that the AuTe layer has a honeycomb structure. Scanning transmission electron microscopy reveals that it is a single-atom layer. In addition, first-principles calculations demonstrate that the honeycomb AuTe monolayer exhibits Dirac nodal line features protected by mirror symmetry, which is validated by angle-resolved photoemission spectra. Our results establish that monolayer AuTe can be a good candidate to investigate 2D DNLFs and provides opportunities to realize high-speed low-dissipation devices.
Keywords:  honeycomb lattices      transition-metal monochalcogenides      AuTe monolayer      two-dimensional (2D) Dirac nodal line fermions  
Received:  13 October 2022      Revised:  08 November 2022      Accepted manuscript online:  09 November 2022
PACS:  61.46.+w  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61925111, 61888102, and 52102193), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Yan-Fang Zhang, Xiao Lin, Shixuan Du, Hong-Jun Gao     E-mail:  zhangyanfang@ucas.ac.cn;xlin@ucas.ac.cn;sxdu@iphy.ac.cn;hjgao@iphy.ac.cn

Cite this article: 

Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧) Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions 2023 Chin. Phys. B 32 016102

[1] Huang D, Choi J, Shih C K and Li X Q 2022 Nat. Nanotechnol. 17 227
[2] Wilson N P, Yao W, Shan J and Xu X D 2021 Nature 599 383
[3] Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L and Ajayan P M 2020 Nature 577 492
[4] Rhodes D, Chae S H, Ribeiro-Palau R and Hone J 2019 Nat. Mater. 18 541
[5] Nazif K N, Kumar A, Hong J H, Lee N, Islam R, McClellan C J, Karni O, van de Groep J, Heinz T F, Pop E, Brongersma M L and Saraswat K C 2021 Nano Lett. 21 3443
[6] Kim H, Uddin S Z, Higashitarumizu N, Rabani E and Javey A 2021 Science 373 448
[7] Xia Y, Berry J and Haataja M P 2021 Nano Lett. 21 4676
[8] Zhang F, Zhang H R, Krylyuk S, Milligan C A, Zhu Y Q, Zemlyanov D Y, Bendersky L A, Burton B P, Davydov A V and Appenzeller J 2019 Nat. Mater. 18 55
[9] Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T and Liu Z 2018 Nature 556 355
[10] Luo Z Y, Zheng W H, Luo N N, Liu B, Zheng B Y, Yang X, Liang D L, Qu J Y, Liu H W, Chen Y, Jiang Y, Chen S L, Zou X L and Pan A L 2022 Nano Lett. 22 2112
[11] Nayak A K, Steinbok A, Roet Y, Koo J, Margalit G, Feldman I, Almoalem A, Kanigel A, Fiete G A, Yan B H, Oreg Y, Avraham N and Beidenkopf H 2021 Nat. Phys. 17 1413
[12] Xing Y, Yang P, Ge J, Yan J J, Luo J W, Ji H R, Yang Z Y, Li Y J, Wang Z J, Liu Y Z, Yang F, Qiu P, Xi C Y, Tian M L, Liu Y, Lin X and Wang J 2021 Nano Lett. 21 7486
[13] Seo S Y, Yang D H, Moon G, Okello O F N, Park M Y, Lee S H, Choi S Y and Jo M H 2021 Nano Lett. 21 3341
[14] Wen W, Dang C and Xie L 2019 Chin. Phys. B 28 058504
[15] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[17] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S X and Gao H J 2018 Adv. Mater. 30 1707055
[18] Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q and Gao H J 2019 Chin. Phys. Lett. 36 028102
[19] Liu B, Liu J, Miao G Y, Xue S W, Zhang S Y, Liu L X, Huang X C, Zhu X T, Meng S, Guo J D, Liu M and Wang W H 2019 J. Phys. Chem. Lett. 10 1866
[20] Lu J C, Gao L, Song S R, Li H, Niu G F, Chen H, Qian T, Ding H, Lin X, Du S X and Gao H J 2021 ACS Appl. Nano Mater. 4 8845
[21] Wu X X, Liu X, Thomale R and Liu C X 2022 Natl. Sci. Rev. 9 087
[22] Wang S Y, Bai X W, Li Q, Ouyang Y X, Shi L and Wang J L 2021 Nanoscale Horiz. 6 661
[23] Gao L, Zhang Y F and Du S X 2021 Nano Res. 14 2826
[24] Ma Y, Kou L, Dai Y and Heine T 2016 Phys. Rev. B 93 235451
[25] Chen X, Esteban-Puyuelo R, Li L and Sanyal B 2021 Phys. Rev. B 103 075429
[26] Shao D F, Gurung G, Zhang S H and Tsymbal E Y 2019 Phys. Rev. Lett. 122 077203
[27] Rui W B, Zhao Y X and Schnyder A P 2018 Phys. Rev. B 97 161113
[28] Sun Y, Zhang Y, Liu C X, Felser C and Yan B 2017 Phys. Rev. B 95 235104
[29] Zhang L, Dong Z, Wang L, Hu Y, Guo C, Guo L, Chen Y, Han L, Zhang K, Tian S, Yao C, Chen Z, Cai M, Jiang M, Xing H, Yu X, Chen X, Zhang K and Lu W 2021 Adv. Sci. (Weinh) 8 2102088
[30] Jovic V, Consiglio A, Smith K E, Jozwiak C, Bostwick A, Rotenberg E, Di Sante D and Moser S 2021 ACS Catal. 11 1749
[31] Tian M, Wang J, Liu X, Chen W, Liu Z, Du H, Ma X, Cui X, Zhao A, Shi Q, Wang Z, Luo Y, Yang J, Wang B and Hou J G 2020 Nano Lett. 20 2157
[32] Liu J, Liu P, Gordon K, Emmanouilidou E, Xing J, Graf D, Chakoumakos B C, Wu Y, Cao H, Dessau D, Liu Q and Ni N 2019 Phys. Rev. B 100 195123
[33] Chi S, Liang F, Chen H, Tian W, Zhang H, Yu H, Wang G, Lin Z, Hu J and Zhang H 2020 Adv. Mater. 32 1904498
[34] Ishizaka S, Ino A, Kono T, Miyai Y, Kumar S, Shimada K, Kitô H, Hase I, Ishida S, Oka K, Fujihisa H, Gotoh Y, Yoshida Y, Iyo A, Ogino H, Eisaki H, Kawashima K, Yanagi Y and Kimura A 2022 Phys. Rev. B 105 L121103
[35] Chen H, Zhang S, Jiang W, Zhang C, Guo H, Liu Z, Wang Z, Liu F and Niu X 2018 J. Mater. Chem. A 6 11252
[36] Yang B, Zhang X and Zhao M 2017 Nanoscale 9 8740
[37] Zhou P, Ma Z S and Sun L Z 2018 J. Mater. Chem. C 6 1206
[38] Zhang R W, Liu C C, Ma D S and Yao Y 2018 Phys. Rev. B 97 125312
[39] Feng B J, Fu B T, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S L, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K H, Chen L, Yao Y G and Matsuda I 2017 Nat. Commun. 8 1007
[40] Cui X X, Li Y F, Guo D P, Guo P J, Lou C C, Mei G Q, Lin C, Tan S J, Liu Z X, Liu K, Lu Z Y, Petek H, Cao L M, Ji W and Feng M 2020 arXiv e-prints 2012.15220
[41] Olsen T, Andersen E, Okugawa T, Torelli D, Deilmann T and Thygesen K S 2019 Phys. Rev. Mater. 3 024005
[42] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475
[43] Cheng L J, Wang M, Pei C J, Liu B, Zhao H, Zhao H, Zhang C J, Yang H Q and Liu S Z 2016 RSC Adv. 6 79612
[44] Qian K, Gao L, Li H, Zhang S, Yan J H, Liu C, Wang J O, Qian T, Ding H, Zhang Y Y, Lin X, Du S X and Gao H J 2020 Chin. Phys. B 29 018104
[45] Wang H L, Zuo P F, Wang A M, Zhang S Y, Mao C J, Song J M, Niu H L, Jin B K and Tian Y P 2013 J. Alloys Comp. 581 816
[46] Zhu Z L, Liu Z L, Wu X, Li X Y, Shi J A, Liu C, Qian G J, Zheng Q, Huang L, Lin X, Wang J O, Chen H, Zhou W, Sun J T, Wang Y L and Gao H J 2022 Chin. Phys. B 31 077101
[47] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys. 93 025006
[48] Rienks E D, Arrala M, Lindroos M, Roth F, Tabis W, Yu G, Greven M and Fink J 2014 Phys. Rev. Lett. 113 137001
[49] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[50] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[51] Blochl P E 1994 Phys. Rev. B 50 17953
[52] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[53] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[54] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[55] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys. Condens. Matter. 22 022201
[56] Tersoff J and Hamann D R 1985 Phys. Rev. B 31 805
[1] Asymmetric response of magnetic impurity in Bernal-stacked bilayer honeycomb lattice
Jin-Hua Sun(孙金华), Ho-Kin Tang(邓皓键). Chin. Phys. B, 2018, 27(7): 077502.
[2] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
No Suggested Reading articles found!