CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe |
Nadezda Korepanova1,2,†, Long Gu(顾龙)1,2,4,5,‡, Mihai Dima3, and Hushan Xu(徐瑚珊)1,2 |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China; 3 Institute for Physics and Nuclear Engineering, Bucharest 077125, Romania; 4 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; 5 Paul Scherrer Institute, Villigen 5232, Switzerland |
|
|
Abstract Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics. The simulations, carried out in austenite and ferrite for niobium carbides, and in austenite for titanium carbide, are analyzed for dependences on temperature, solute concentration, and initial cluster distribution. The results are presented for different temperatures and solute concentrations, compared to experimental data available. They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with monomers only present a significantly different behavior from denser alloys or ones with different initial cluster distributions.
|
Received: 13 May 2021
Revised: 15 June 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
61.82.Bg
|
(Metals and alloys)
|
|
61.72.sh
|
(Impurity distribution)
|
|
Fund: N. Korepanova is grateful for the CAS-TWAS President's Fellowship Programme for this doctoral fellowship (Grant No. 2016CTF004). |
Corresponding Authors:
Nadezda Korepanova, Long Gu
E-mail: nadezhda_kv@bk.ru;gulong@impcas.ac.cn
|
Cite this article:
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊) Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe 2022 Chin. Phys. B 31 026103
|
[1] Thorvaldsson T and Dunlop G L 1980 Metal Sci. 14 513 [2] Sourmail T 2002 Simultaneous Precipitation Reactions in Creep-Resistant Austenitic Stainless Steels (PhD thesis) (University of Cambridge) [3] Kong H J and Liu Ch T 2018 Technologies 6 36 [4] Herschbach K, Schneider W and Ehrlich K 1993 J. Nucl. Mater. 203 233 [5] Kesternich W and Rothaut J 1981 J. Nucl. Mater. 103-104 845 [6] Kesternich W 1985 J. Nucl. Mater. 127 153 [7] Kesternich W and Meertens D 1986 Acta Metal. 34 1071 [8] Kimoto T and Shiraishi H 1986 J. Nucl. Mater. 141-143 754 [9] Cautaerts N, Delville R, Dietz W and Verwerft M 2017 J. Nucl. Mater. 493 154 [10] Cautaerts N, Delville R, Stergar E, Schryvers D and Verwerft M 2018 J. Nucl. Mater. 507 177 [11] Cautaerts N, Delville R, Stergar E, Schryvers D and Verwerft M 2018 J. Nucl. Mater. 507 177 [12] Christien F and Barbu A 2004 J. Nucl. Mater. 324 90 [13] Ke J H, Ke H, Odette G R and Morgan D 2018 J. Nucl. Mater. 498 83 [14] Wang Z, Yong Q, Sun X, Yang Z, Li Z, Zhang C and Weng Y 2012 ISIJ Int. 52 1661 [15] Dutta B, Palmiere E J and Sellars C M 2001 Acta Mater. 49 785 [16] Perrard F, Deschamps A and Maugis P 2007 Acta Mater. 55 1255 [17] Wang Z, Yong Q, Sun X, Yang Z, Li Z, Zhang C and Weng Y 2012 ISIJ Int. 52 1661 [18] Mathon M H, Barbu A, Dunstetter F, Maury F, Lorenzelli N and de Novion C H 1997 J. Nucl. Mater. 245 224 [19] Ghoniem N M and Sharafat S 1980 J. Nucl. Mater. 92 121 [20] Wehner M F and Wolfer W G 1985 Philos. Mag. A 52 189 [21] Wang Z, Zhang H, Guo C, Leng Z, Yang Z, Sun X, Yao C, Zhang Z and Jiang F 2016 Mater. Design 109 361 [22] 1980 Metal. Trans. A 11A 387 [24] Kesternich W 1985 Philos. Mag. A 52 533 [25] Jang J H, Lee C H, Heo Y U and Suh D W 2012 Acta Mater. 60 208 [26] Moll S H and Ogilvie R E 1959 Trans. Am. Inst. Min. Metal. Eng. 215 613 [27] Gustafson A 2000 Mater. Sci. Eng. A 287 52 [28] Dumitresc L F S and Hillert M 1999 ISIJ Int. 39 84 [29] Zou H and Kirkaldy J S 1991 Metal. Trans. A 22A 1511 [30] Kurokawa S, Ruzzante J E, Hey A M and Dyment F 1983 Metal Sci. 17 433 [31] Yong Q L, Li Y F and Sun Z B 1989 Acta Metal. Sin. 2 153 [32] Wang Z, Sun X, Yang Z, Yong Q, Zhang C, Li Z and Weng Y 2013 Mater. Sci. Eng. A 573 84 [33] Liu W J and Jonas J J 1988 Metal. Trans. A 19A 1415 [34] Perrard F, Deschamps A, Bley F, Donnadieu P and Maugisb P 2006 J. Appl. Crystal. 39 473 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|