Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037103    DOI: 10.1088/1674-1056/ac306a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2

Xiao-Fang Tang(唐筱芳)1,2,3, Shuang-Xing Zhu(朱双兴)3,†, Hao Liu(刘豪)3, Chen Zhang(章晨)3, Qi-Yi Wu(吴旗仪)3, Zi-Teng Liu(刘子腾)3, Jiao-Jiao Song(宋姣姣)3, Xiao Guo(郭晓)3, Yong-Song Wang(王永松)3, He Ma(马赫)4, Yin-Zou Zhao(赵尹陬)3, Fan-Ying Wu(邬钒颖)3, Shu-Yu Liu(刘姝妤)3, Kai-Hui Liu(刘开辉)4, Ya-Hua Yuan(袁亚华)3, Han Huang(黄寒)3, Jun He(何军)3, Wen Xu(徐文)1, Hai-Yun Liu(刘海云)5, Yu-Xia Duan(段玉霞)3, and Jian-Qiao Meng(孟建桥)3,‡
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 School of Physics and Electronics, Central South University, Changsha 410083, China;
4 State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China;
5 Beijing Academy of Quantum Information Sciences, Beijing 100085, China
Abstract  High-quality large 1$T$ phase of Ti$X_2$ ($X ={\rm Te}$, Se, and S) single crystals have been grown by chemical vapor transport using iodine as a transport agent. The samples are characterized by compositional and structural analyses, and their properties are investigated by Raman spectroscopy. Several phonon modes have been observed, including the widely reported $A_{1g}$ and $E_g$ modes, the rarely reported $E_u$ mode ($\sim$183 cm$^{-1}$ for TiTe$_2$, and $\sim$185 cm$^{-1}$ for TiS$_2$), and even the unexpected $K$ mode ($\sim$85 cm$^{-1}$) of TiTe$_2$. Most phonons harden with the decrease of temperature, except that the $K$ mode of TiTe$_2$ and the $E_u$ and "$A_{2u}$/Sh" modes of TiS$_2$ soften with the decrease of temperature. In addition, we also found phonon changes in TiSe$_2$ that may be related to charge density wave phase transition. Our results on Ti$X_2$ phonons will help to understand their charge density wave and superconductivity.
Keywords:  transition-metal dichalcogenides      chemical vapor transport      Raman      phonon  
Received:  20 August 2021      Revised:  11 October 2021      Accepted manuscript online:  18 October 2021
PACS:  71.45.Lr (Charge-density-wave systems)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  81.10.Bk (Growth from vapor)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and U1930116) and the Innovation-driven Plan in Central South University (Grant No. 2016CXS032).
Corresponding Authors:  Shuang-Xing Zhu, Jian-Qiao Meng     E-mail:  182211030@csu.edu.cn;jqmeng@csu.edu.cn

Cite this article: 

Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥) Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2 2022 Chin. Phys. B 31 037103

[1] Hsu Y, Vaezi A, Fischer M H and Kim E 2017 Nat. Commun. 8 14985
[2] Hsu Y, Cole W S, Zhang R and Sau J D 2020 Phys. Rev. Lett. 125 097001
[3] Valla T, Fedorov A V, Johnson P D, Glans P, Mcguinness C, Smith K E, Andrei E Y and Berger H 2004 Phys. Rev. Lett. 92 086401
[4] Chen P, Pai W W, Chan Y H, Takayama A, Xu C Z, Karn A, Hasegawa S, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2017 Nat. Commun. 8 516
[5] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[6] Liu Y, Zhao J, Yu L, Lin C, Liang A, Hu C, Ding Y, Xu Y, He S, Zhao L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Weng H, Dai X, Fang Z and Zhou X J 2015 Chin. Phys. Lett. 32 67303
[7] Liu Y, Zhao J, Yu L, Lin C, Hu C, Liu D, Peng Y, Xie Z, He J, Chen C, Feng Y, Yi H, Liu X, Zhao L, He S, Liu G, Dong X, Zhang J, Chen C, Xu Z, Weng H, Dai X, Fang Z and Zhou X J 2015 Chin. Phys. B 24 067401
[8] Absor M A U, Santoso I, Yamaguchi N and Ishii F 2020 Phys. Rev. B 101 155410
[9] Chernozatonskii L A and Artyukh A A 2018 Physics Uspekhi 61 2
[10] Naylor C H, Parkin W M, Ping J L, Gao Z L, Zhou Y R, Kim Y, Streller F, Carpick R W, Rappe A M, Drndić M, Kikkawa J M and Johnson A T C 2016 Nano Lett. 16 4297
[11] Tang X F, Duan Y X, Wu F Y, Liu S Y, Zhang C, Zhao Y Z, Song J J, Luo Y, Wu Q Y, He J, Xu W and Meng J Q 2019 Phys. Rev. B 99 125112
[12] Zhu S X, Zhang C, Wu Q Y, Tang X F, Liu H, Liu Z T, Luo Y, Song J J, Wu F Y, Zhao Y Z, Liu S Y, Le T, Lu X, Ma H, Liu K H, Yuan Y H, Huang H, He J, Liu H Y, Duan Y X and Meng J Q 2021 Phys. Rev. B 103 115108
[13] Lin M K, Hlevyack A J, Chen P, Liu R Y, Mo S K and Chiang T C 2020 Phys. Rev. Lett. 125 176405
[14] Xu S Y, Ma Q, Gao Y, Koga, Zong A, Mier V, Andrés M, Dinh T H, Huang S M, Singh B, Hsu C H, Chang T R, Ruff J P C, Watanabe K, Taniguchi T, Lin H, Karapetrov G, Xiao D, Jarillo-Herrero P and Gedik N 2020 Nature 578 545
[15] Lian C, Zhang S J, Hu S Q, Guan M X and Meng S 2020 Nat. Commun. 11 43
[16] Jaouen T, Rumo M, Hildebrand B, Mottas M L, Nicholson C W, Kremer G, Salzmann B, Vanini F, Barreteau C, Giannini E, Beck H, Aebi P and Monne C 2019 arXiv:1911.06053
[17] Parvaz M, Salah N and Khan Z H 2020 Optik 207 163810
[18] Ivanovskaya V V and Seifert G 2004 Solid State Commun. 130 175
[19] Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z and Gao C X 2011 J. Appl. Phys. 109 053717
[20] de Boer D K G, van Bruggen C F, Bus G W, Coehoorn R, Haas C, Sawatzky G A, Myron H W, Norman D and Padmore H 1984 Phys. Rev. B 29 6797
[21] Dutta U, Malavi P S, Sahoo S, Joseph B and Karmakar S 2018 Phys. Rev. B 97 060503
[22] Fragkos S, Sant R, Alvarez C, Bosak A, Tsipas P, Tsoutsou D, Okuno H, Renaud G and Dimoulas A 2019 Adv. Mater. Interfaces 6 1801850
[23] Kusmartseva A F, Sipos B, Berger H, Forr O L and Tuti Ifmmode Check S Else V S Fi E 2009 Phys. Rev. Lett. 103 236401
[24] Joe Y I, Chen X M, Ghaemi P, Finkelstein K D, de la Pena G A, Gan Y, Lee J C T, Yuan S, Geck J, Macdougall G J, Chiang T C, Cooper S L, Fradkin E and Abbamonte P 2014 Nat. Phys. 10 421
[25] Sugawara K, Nakata Y, Shimizu R, Han P, Hitosugi T, Sato T and Takahashi T 2015 ACS Nano 10 1341
[26] Chen P, ChanY H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943
[27] Fang X Y, Hong H, Chen P and Chiang T C 2017 Phys. Rev. B 95 201409
[28] Calandra M and Mauri F 2011 Phys. Rev. Lett. 106 196406
[29] Hedayat H, Sayers C J, Bugini D, Dallera C, Wolverson D, Batten T, Karbassi S, Friedemann S, Cerullo G, van Wezel J, Clark S R, Carpene E and Da E C 2019 Phys. Rev. Research 1 023029
[30] Liao J, Zhao Y, Zhao Y, Yang X and Chen Y 2020 J. Appl. Phys. 127 044301
[31] Zhang M, Wang X, Rahman A, Zeng Q, Huang D, Dai R, Wang Z and Zhang Z 2018 Appl. Phys. Lett. 112 041907
[32] Liu W, Luo A, Zhong G, Zou J and Xu G 2021 arXiv:2105.01328v1
[33] Zhu Z Y, Cheng Y and Schwingenschlögl U 2015 Sci. Rep. 4 4025
[34] Liu S Y, Zhu S X, Wu Q Y, Zhang C, Song P B, Shi Y G, Liu H, Liu Z T, Song J J, Wu F Y, Zhao Y Z, Tang X F, Yuan Y H, Huang H, He J, Liu H Y, Duan Y X and Meng J Q 2021 Results in Physics 30 104816
[35] Al-Alamy F A S and Balchin A A 1977 J. Cryst. Growth 38 221
[36] Ding H and Xu B 2012 J. Chem. Phys. 137 224509
[37] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V and Narayana C 2018 Phys. Rev. B 97 085107
[38] Hangyo M, Nakashima S and Mitsuishi A 1983 Ferroelectrics 52 151
[39] Xiao R C, Lu W J, Shao D F, Li J Y, Wei M J, Lv H Y, Tong P, Zhu X B and Sun Y P 2017 J. Mater. Chem. C 5 4167
[40] Goli P, Khan J, Wickramaratne D, Lake R K and Balandin A A 2012 Nano Lett. 12 5941
[41] Samnakay R, Wickramaratne D, Pope T R, Lake R K, Salguero T T and Balandin A A 2015 Nano Lett. 15 2965
[42] Albertini O R, Zhao R, Mccann R L, Feng S, Terrones M, Freericks J K, Robinson J A and Liu A Y 2016 Phys. Rev. B 93 214109
[43] Holy J A, Woo K C, Klein M V and Brown F C 1977 Phys. Rev. B 16 3628
[44] Catlow C R A and Kotomin E A 2003 Computational Materials Science (Amsterdam:IOS Press)
[45] Wang H, Chen Y, Duchamp M, Zeng Q, Wang X, Tsang S H, Li H, Jing L, Yu T, Teo E H T and Liu Z 2018 Adv. Mater. 30 1704382
[46] Snow C S, Karpus J F, Cooper S L, Kidd T E and Chiang T C 2003 Phys. Rev. Lett. 91 136402
[47] Sandoval S J, Chen X K and Irwin J C 1992 Phys. Rev. B 45 14347
[48] Dużyńska A, Judek J, Wilczyński K, Zberecki K, Lapińska A, Wróblewska A and Zdrojek M 2019 J. Raman Spectrosc. 50 1
[49] Sherrell P C, Sharda K, Grotta C, Ranalli J, Sokolikova M S, Pesci F M, Palczynski P, Bemmer V L and Mattevi C 2018 ACS Omega 3 8655
[50] Lin C, Zhu X, Feng J, Wu C, Hu S, Peng J, Guo Y, Peng L, Zhao J, Huang J, Yang J and Xie Y 2013 J. Am. Chem. Soc. 135 5144
[51] Vaterlaus H P and Levy F 1985 J. Phys. C:Solid State Phys. 18 2351
[52] Klipstein P C, Bagnall A G, Liang W Y, Marseglia E A and Friend R H 1981 J. Phys. C:Solid State Phys. 14 4067
[53] Klein M V 1982 Light Scattering in Solids, Topics in Applied Physics, 2nd ed. (Berlin:Springer)
[54] Wu S F, Richard P, Wang X B, Lian C S, Nie S M, Wang J T, Wang N L and Ding H 2014 Phys. Rev. B 90 054519
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[5] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[6] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[15] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
No Suggested Reading articles found!