Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047203    DOI: 10.1088/1674-1056/27/4/047203
Special Issue: SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices Prev   Next  

Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites

Hong Wu(吴宏)1,2, Nusrat Shaheen1, Heng-Quan Yang(杨恒全)1, Kun-Ling Peng(彭坤岭)1,2, Xing-Chen Shen(沈星辰)1,2, Guo-Yu Wang(王国玉)2, Xu Lu(卢旭)1, Xiao-Yuan Zhou(周小元)1
1. Department of Applied Physics, Chongqing University, Chongqing 400044, China;
2. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Abstract  

We report the synthesis of Nd-filled and Fe substituted p-type NdxFe3.2Co0.8Sb12 (x=0.5, 0.6, 0.7, 0.8, and 0.9) skutterudites by the solid-state reaction method. The influences of Nd filler on the electrical and thermal transport properties are investigated in a temperature range from room temperature to 850 K. A lowest lattice thermal conductivity of 0.88 W·m-1·K-1 is obtained in Nd0.8Fe3.2Co0.8Sb12 at 673 K, which results from the localized vibration modes of fillers and the increase of grains boundaries. Meanwhile, the maximum power factor is 2.77 mW·m-1·K-2 for the Nd0.9Fe3.2Co0.8Sb12 sample at 668 K. Overall, the highest dimensionless figure of merit zT=0.87 is achieved at 714 K for Nd0.9Fe3.2Co0.8Sb12.

Keywords:  thermoelectric      p-type skutterudites      neodymium filler      lattice thermal conductivity  
Received:  02 September 2017      Revised:  05 October 2017      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fg (Thermoelectric effects)  
  74.25.fc (Electric and thermal conductivity)  
  74.25.F- (Transport properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674040, 11404044, 51472036, 51672270, and 51401202), the Fundamental Research Funds for the Central Universities (Grant No. 106112016CDJZR308808), the 100 Talent Program of the Chinese Academy of Sciences (Grant No. 2013-46), and the Project for Fundamental and Frontier Research in Chongqing, China (Grant No. CSTC2015JCYJBX0026).

Corresponding Authors:  Xiao-Yuan Zhou     E-mail:  xiaoyuan2013@cqu.edu.cn

Cite this article: 

Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元) Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites 2018 Chin. Phys. B 27 047203

[1] Skutterudites Uher C 2001 Prospective novel thermoelectrics. Semiconductors and semimetals 69 139
[2] Slack G A and Tsoukala V G 1994 J. Appl. Phys. 76 1665
[3] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[4] Sales B, Mandrus D and Williams R K 1996 Science 272 1325
[5] Bell L E 2008 Science 321 1457
[6] Morelli D T, Meisner G P, Chen B, Hu S and Uher C 1997 Phys. Rev. B 56 7376
[7] Sales B, Mandrus D, Chakoumakos B, Keppens V and Thompson J 1997 Phys. Rev. B 56 15081
[8] Rogl G, Grytsiv A, Bauer E, Rogl P and Zehetbauer M 2010 Intermetallics 18 57
[9] Nordstr? m L and Singh D J 1996 Phys. Rev. B 53 1103
[10] Tang X, Chen L, Goto T, Hirai T and Yuan R 2002 J. Mater. Res. 17 2953
[11] Zhou C, Morelli D, Zhou X, Wang G and Uher C 2011 Intermetallics 19 1390
[12] Tan G, Zheng Y and Tang X 2013 Appl. Phys. Lett. 103 183904
[13] Zhou L, Qiu P, Uher C, Shi X and Chen L D 2013 Intermetallics 32 209
[14] Chandra M R, Mueller E and Kim I H 2012 J. Appl. Phys. 111 023708
[15] Duan B, Zhai P, Liu L, Zhang Q and Ruan X 2012 J. Mater. Sci.:Materials in Electronics 23 1817
[16] Qiu P, Liu R, Yang J, Shi X, Huang X and Zhang W 2012 J. Appl. Phys. 111 023705
[17] Xu C, Duan B, Ding S, Zhai P and Li P 2013 Physica B:Conden. Matter 425 34
[18] Sales B, Mandrus D, Chakoumakos B, Keppens V and Thompson 1997 Phys. Rev. B 56 15081
[19] Peng K L, Wu H, YanY C, Guo L J, Wang G Y, Lu X and Zhou X Y 2017 J. Mater. Chem. A 5 14053
[20] Liu R H, Qiu P F, Chen X H, Huang X Y and Chen L D 2011 J. Mater. Res. 26 1813
[21] Guo L J, Cai Z W, Xu X L, Peng K L, Wang G W, Wang G Y and Zhou X Y 2015 J. Nanosci. Nanotechnol. 5 1
[22] Liu R H, Yang J, Chen X H, Shi X, Chen L D and Uher C 2011 Intermetallics 19 1747
[23] Liu R H, Yang J, Chen X H, Shi X, Chen L D and Uher C 2013 Intermetallics 32 209
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[11] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[12] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[13] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[14] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!