|
|
Charge density wave states in phase-engineered monolayer VTe2 |
Zhi-Li Zhu(朱知力)1, Zhong-Liu Liu(刘中流)1, Xu Wu(武旭)2,1, Xuan-Yi Li(李轩熠)1, Jin-An Shi(时金安)1, Chen Liu(刘晨)3, Guo-Jian Qian(钱国健)1, Qi Zheng(郑琦)1, Li Huang(黄立)1, Xiao Lin(林晓)1, Jia-Ou Wang(王嘉欧)3, Hui Chen(陈辉)1, Wu Zhou(周武)1, Jia-Tao Sun(孙家涛)2,1, Ye-Liang Wang(王业亮)2,1,†, and Hong-Jun Gao(高鸿钧)1,‡ |
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China; 3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China |
|
|
Abstract Charge density wave (CDW) strongly affects the electronic properties of two-dimensional (2D) materials and can be tuned by phase engineering. Among 2D transitional metal dichalcogenides (TMDs), VTe$_{2}$ was predicted to require small energy for its phase transition and shows unexpected CDW states in its T-phase. However, the CDW state of H-VTe$_{2}$ has been barely reported. Here, we investigate the CDW states in monolayer (ML) H-VTe$_{2}$, induced by phase-engineering from T-phase VTe$_{2}$. The phase transition between T- and H-VTe$_{2}$ is revealed with x-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) measurements. For H-VTe$_{2}$, scanning tunneling microscope (STM) and low-energy electron diffraction (LEED) results show a robust $2\sqrt 3 \times 2\sqrt 3 $ CDW superlattice with a transition temperature above 450 K. Our findings provide a promising way for manipulating the CDWs in 2D materials and show great potential in its application of nanoelectronics.
|
Received: 07 March 2022
Revised: 11 April 2022
Accepted manuscript online: 14 April 2022
|
PACS:
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400100, 2020YFA0308800, and 2019YFA0308000), the National Natural Science Foundation of China (Grant Nos. 92163206, 62171035, 62171035, 61901038, 61971035, 61725107, and 61674171), the Beijing Nova Program from Beijing Municipal Science & Technology Commission (Grant No. Z211100002121072), and the Beijing Natural Science Foundation (Grant Nos. Z190006 and 4192054). |
Corresponding Authors:
Ye-Liang Wang, Hong-Jun Gao
E-mail: yeliang.wang@bit.edu.cn;hjgao@iphy.ac.cn
|
Cite this article:
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧) Charge density wave states in phase-engineered monolayer VTe2 2022 Chin. Phys. B 31 077101
|
[1] Castro Neto A H 2001 Phys. Rev. Lett. 86 4382 [2] Wen W, Dang C and Xie L 2019 Chin. Phys. B 28 058504 [3] Si J G, Lu W J, Wu H Y, Lv H Y, Liang X, Li Q J and Sun Y P 2020 Phys. Rev. B 101 235405 [4] Ishiguro Y, Bogdanov K, Kodama N, Ogiba M, Ohno T, Baranov A and Takai K 2020 J. Phys. Chem. C 124 27176 [5] Wang R, Zhou J, Wang X, Xie L, Zhao J and Qiu X 2020 Nano. Res. 14 1162 [6] Xie X, Lin D, Zhu L, Li Q, Zong J, Chen W, Meng Q, Tian Q, Li S C, Xi X, Wang C and Zhang Y 2021 Chin. Phys. Lett. 38 107101 [7] Dang C, Guan M, Hussain S, Wen W, Zhu Y, Jiao L, Meng S and Xie L 2020 Nano Lett. 20 6725 [8] Wang X, Liu H, Wu J, Lin J, He W, Wang H, Shi X, Suenaga K and Xie L 2018 Adv. Mater. 30 1800074 [9] Liu G, Debnath B, Pope T R, Salguero T T, Lake R K and Balandin A A 2016 Nat. Nanotechnol. 11 845 [10] Patel T, Okamoto J, Dekker T, Yang B, Gao J, Luo X, Lu W, Sun Y and Tsen A W 2020 Nano Lett. 20 7200 [11] Liu H, Wu T, Yan X, Wu J, Wang N, Du Z, Yang H, Chen B, Zhang Z, Liu F, Wu W, Guo J and Wang H 2021 Nano Lett. 21 3465 [12] Wang J, Guo C, Guo W, Wang L, Shi W and Chen X 2019 Chin. Phys. B 28 046802 [13] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [14] Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931 [15] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702 [16] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117 [17] Yoo Y, DeGregorio Z P, Su Y, Koester S J and Johns J E 2017 Adv. Mater. 29 1605461 [18] Qu Y, Medina H, Wang S W, Wang Y C, Chen C W, Su T Y, Manikandan A, Wang K, Shih Y C, Chang J W, Kuo H C, Lee C Y, Lu S Y, Shen G, Wang Z M and Chueh Y L 2016 Adv. Mater. 28 9831 [19] Su J, Wang M, Li Y, Wang F, Chen Q, Luo P, Han J, Wang S, Li H and Zhai T 2020 Adv. Funct. Mater. 30 2000240 [20] Zhang D, Ha J, Baek H, Chan Y H, Natterer F D, Myers A F, Schumacher J D, Cullen W G, Davydov A V, Kuk Y, Chou M Y, Zhitenev N B and Stroscio J A 2017 Phys. Rev. Mater. 1 024005 [21] Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L and Gao H J 2018 Sci. Bull. 63 419 [22] Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2018 Phys. Rev. Lett. 121 196402 [23] Miao G, Xue S, Li B, Lin Z, Liu B, Zhu X, Wang W and Guo J 2020 Phys. Rev. B 101 035407 [24] Liu M Z, Wu C W, Liu Z Z, Wang Z Q, Yao D X and Zhong D 2020 Nano. Res. 13 1733 [25] Wang Y, Ren J, Li J, Peng H, Yu P, Duan W and Zhou S 2019 Phys. Rev. B 100 241404 [26] Coelho P M, Lasek K, Nguyen Cong K, Li J, Niu W, Liu W, Oleynik, II and Batzill M 2019 J. Phys. Chem. Lett. 10 4987 [27] Wong P K J, Zhang W, Zhou J, Bussolotti F, Yin X, Zhang L, N'Diaye A T, Morton S A, Chen W, Goh J, de Jong M P, Feng Y P and Wee A T S 2019 ACS Nano 13 12894 [28] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Magn. Magn. Mater. 508 166878 [29] Wasey A H M A, Chakrabarty S and Das G P 2015 J. Appl. Phys. 117 064313 [30] Li F, Tu K and Chen Z 2014 J. Phys. Chem. C 118 21264 [31] Kan M, Wang B, Lee Y H and Sun Q 2014 Nano. Res. 8 1348 [32] Liu J, Hou W J, Cheng C, Fu H X, Sun J T and Meng S 2017 J. Phys.:Condens Matter 29 255501 [33] Manchanda P and Skomski R 2016 J. Phys.:Condens Matter 28 064002 [34] Rasmussen F A and Thygesen K S 2015 J. Phys. Chem. C 119 13169 [35] Ji S, Wu H, Zhou S, Niu W, Wei L, Li X A, Li F and Pu Y 2020 Chin. Phys. Lett. 37 087505 [36] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [37] Blochl P E 1994 Phys. Rev. B 50 17953 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Borisenko S V, Kordyuk A A, Zabolotnyy V B, Inosov D S, Evtushinsky D, Buchner B, Yaresko A N, Varykhalov A, Follath R, Eberhardt W, Patthey L and Berger H 2009 Phys. Rev. Lett. 102 166402 [40] Ryu H, Chen Y, Kim H, Tsai H Z, Tang S, Jiang J, Liou F, Kahn S, Jia C, Omrani A A, Shim J H, Hussain Z, Shen Z X, Kim K, Min B I, Hwang C, Crommie M F and Mo S K 2018 Nano Lett. 18 689 [41] Chen P, Chan Y H, Fang X Y, Mo S K, Hussain Z, Fedorov A V, Chou M Y and Chiang T C 2016 Sci. Rep. 6 37910 [42] Liu L, Yang H, Huang Y, Song X, Zhang Q, Huang Z, Hou Y, Chen Y, Xu Z, Zhang T, Wu X, Sun J, Huang Y, Zheng F, Li X, Yao Y, Gao H J and Wang Y 2021 Nat. Commun. 12 1978 [43] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T and Takahashi T 2016 NPG. Asia. Mater. 8 e321 [44] Nakata Y, Sugawara K, Chainani A, Oka H, Bao C, Zhou S, Chuang P Y, Cheng C M, Kawakami T, Saruta Y, Fukumura T, Zhou S, Takahashi T and Sato T 2021 Nat. Commun. 12 5873 [45] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960 [46] Hu Q, Yin C, Zhang L, Lei L, Wang Z, Chen Z, Tang J and Ang R 2018 Chin. Phys. B 27 017104 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|