Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077101    DOI: 10.1088/1674-1056/ac6739
RAPID COMMUNICATION Prev   Next  

Charge density wave states in phase-engineered monolayer VTe2

Zhi-Li Zhu(朱知力)1, Zhong-Liu Liu(刘中流)1, Xu Wu(武旭)2,1, Xuan-Yi Li(李轩熠)1, Jin-An Shi(时金安)1, Chen Liu(刘晨)3, Guo-Jian Qian(钱国健)1, Qi Zheng(郑琦)1, Li Huang(黄立)1, Xiao Lin(林晓)1, Jia-Ou Wang(王嘉欧)3, Hui Chen(陈辉)1, Wu Zhou(周武)1, Jia-Tao Sun(孙家涛)2,1, Ye-Liang Wang(王业亮)2,1,†, and Hong-Jun Gao(高鸿钧)1,‡
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100084, China
Abstract  Charge density wave (CDW) strongly affects the electronic properties of two-dimensional (2D) materials and can be tuned by phase engineering. Among 2D transitional metal dichalcogenides (TMDs), VTe$_{2}$ was predicted to require small energy for its phase transition and shows unexpected CDW states in its T-phase. However, the CDW state of H-VTe$_{2}$ has been barely reported. Here, we investigate the CDW states in monolayer (ML) H-VTe$_{2}$, induced by phase-engineering from T-phase VTe$_{2}$. The phase transition between T- and H-VTe$_{2}$ is revealed with x-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) measurements. For H-VTe$_{2}$, scanning tunneling microscope (STM) and low-energy electron diffraction (LEED) results show a robust $2\sqrt 3 \times 2\sqrt 3 $ CDW superlattice with a transition temperature above 450 K. Our findings provide a promising way for manipulating the CDWs in 2D materials and show great potential in its application of nanoelectronics.
Keywords:  charge density wave      H-VTe2      phase engineering      transitional metal dichalcogenides  
Received:  07 March 2022      Revised:  11 April 2022      Accepted manuscript online:  14 April 2022
PACS:  71.45.Lr (Charge-density-wave systems)  
  64.60.-i (General studies of phase transitions)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400100, 2020YFA0308800, and 2019YFA0308000), the National Natural Science Foundation of China (Grant Nos. 92163206, 62171035, 62171035, 61901038, 61971035, 61725107, and 61674171), the Beijing Nova Program from Beijing Municipal Science & Technology Commission (Grant No. Z211100002121072), and the Beijing Natural Science Foundation (Grant Nos. Z190006 and 4192054).
Corresponding Authors:  Ye-Liang Wang, Hong-Jun Gao     E-mail:  yeliang.wang@bit.edu.cn;hjgao@iphy.ac.cn

Cite this article: 

Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧) Charge density wave states in phase-engineered monolayer VTe2 2022 Chin. Phys. B 31 077101

[1] Castro Neto A H 2001 Phys. Rev. Lett. 86 4382
[2] Wen W, Dang C and Xie L 2019 Chin. Phys. B 28 058504
[3] Si J G, Lu W J, Wu H Y, Lv H Y, Liang X, Li Q J and Sun Y P 2020 Phys. Rev. B 101 235405
[4] Ishiguro Y, Bogdanov K, Kodama N, Ogiba M, Ohno T, Baranov A and Takai K 2020 J. Phys. Chem. C 124 27176
[5] Wang R, Zhou J, Wang X, Xie L, Zhao J and Qiu X 2020 Nano. Res. 14 1162
[6] Xie X, Lin D, Zhu L, Li Q, Zong J, Chen W, Meng Q, Tian Q, Li S C, Xi X, Wang C and Zhang Y 2021 Chin. Phys. Lett. 38 107101
[7] Dang C, Guan M, Hussain S, Wen W, Zhu Y, Jiao L, Meng S and Xie L 2020 Nano Lett. 20 6725
[8] Wang X, Liu H, Wu J, Lin J, He W, Wang H, Shi X, Suenaga K and Xie L 2018 Adv. Mater. 30 1800074
[9] Liu G, Debnath B, Pope T R, Salguero T T, Lake R K and Balandin A A 2016 Nat. Nanotechnol. 11 845
[10] Patel T, Okamoto J, Dekker T, Yang B, Gao J, Luo X, Lu W, Sun Y and Tsen A W 2020 Nano Lett. 20 7200
[11] Liu H, Wu T, Yan X, Wu J, Wang N, Du Z, Yang H, Chen B, Zhang Z, Liu F, Wu W, Guo J and Wang H 2021 Nano Lett. 21 3465
[12] Wang J, Guo C, Guo W, Wang L, Shi W and Chen X 2019 Chin. Phys. B 28 046802
[13] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[14] Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931
[15] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
[16] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[17] Yoo Y, DeGregorio Z P, Su Y, Koester S J and Johns J E 2017 Adv. Mater. 29 1605461
[18] Qu Y, Medina H, Wang S W, Wang Y C, Chen C W, Su T Y, Manikandan A, Wang K, Shih Y C, Chang J W, Kuo H C, Lee C Y, Lu S Y, Shen G, Wang Z M and Chueh Y L 2016 Adv. Mater. 28 9831
[19] Su J, Wang M, Li Y, Wang F, Chen Q, Luo P, Han J, Wang S, Li H and Zhai T 2020 Adv. Funct. Mater. 30 2000240
[20] Zhang D, Ha J, Baek H, Chan Y H, Natterer F D, Myers A F, Schumacher J D, Cullen W G, Davydov A V, Kuk Y, Chou M Y, Zhitenev N B and Stroscio J A 2017 Phys. Rev. Mater. 1 024005
[21] Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L and Gao H J 2018 Sci. Bull. 63 419
[22] Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2018 Phys. Rev. Lett. 121 196402
[23] Miao G, Xue S, Li B, Lin Z, Liu B, Zhu X, Wang W and Guo J 2020 Phys. Rev. B 101 035407
[24] Liu M Z, Wu C W, Liu Z Z, Wang Z Q, Yao D X and Zhong D 2020 Nano. Res. 13 1733
[25] Wang Y, Ren J, Li J, Peng H, Yu P, Duan W and Zhou S 2019 Phys. Rev. B 100 241404
[26] Coelho P M, Lasek K, Nguyen Cong K, Li J, Niu W, Liu W, Oleynik, II and Batzill M 2019 J. Phys. Chem. Lett. 10 4987
[27] Wong P K J, Zhang W, Zhou J, Bussolotti F, Yin X, Zhang L, N'Diaye A T, Morton S A, Chen W, Goh J, de Jong M P, Feng Y P and Wee A T S 2019 ACS Nano 13 12894
[28] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Magn. Magn. Mater. 508 166878
[29] Wasey A H M A, Chakrabarty S and Das G P 2015 J. Appl. Phys. 117 064313
[30] Li F, Tu K and Chen Z 2014 J. Phys. Chem. C 118 21264
[31] Kan M, Wang B, Lee Y H and Sun Q 2014 Nano. Res. 8 1348
[32] Liu J, Hou W J, Cheng C, Fu H X, Sun J T and Meng S 2017 J. Phys.:Condens Matter 29 255501
[33] Manchanda P and Skomski R 2016 J. Phys.:Condens Matter 28 064002
[34] Rasmussen F A and Thygesen K S 2015 J. Phys. Chem. C 119 13169
[35] Ji S, Wu H, Zhou S, Niu W, Wei L, Li X A, Li F and Pu Y 2020 Chin. Phys. Lett. 37 087505
[36] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[37] Blochl P E 1994 Phys. Rev. B 50 17953
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Borisenko S V, Kordyuk A A, Zabolotnyy V B, Inosov D S, Evtushinsky D, Buchner B, Yaresko A N, Varykhalov A, Follath R, Eberhardt W, Patthey L and Berger H 2009 Phys. Rev. Lett. 102 166402
[40] Ryu H, Chen Y, Kim H, Tsai H Z, Tang S, Jiang J, Liou F, Kahn S, Jia C, Omrani A A, Shim J H, Hussain Z, Shen Z X, Kim K, Min B I, Hwang C, Crommie M F and Mo S K 2018 Nano Lett. 18 689
[41] Chen P, Chan Y H, Fang X Y, Mo S K, Hussain Z, Fedorov A V, Chou M Y and Chiang T C 2016 Sci. Rep. 6 37910
[42] Liu L, Yang H, Huang Y, Song X, Zhang Q, Huang Z, Hou Y, Chen Y, Xu Z, Zhang T, Wu X, Sun J, Huang Y, Zheng F, Li X, Yao Y, Gao H J and Wang Y 2021 Nat. Commun. 12 1978
[43] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T and Takahashi T 2016 NPG. Asia. Mater. 8 e321
[44] Nakata Y, Sugawara K, Chainani A, Oka H, Bao C, Zhou S, Chuang P Y, Cheng C M, Kawakami T, Saruta Y, Fukumura T, Zhou S, Takahashi T and Sato T 2021 Nat. Commun. 12 5873
[45] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
[46] Hu Q, Yin C, Zhang L, Lei L, Wang Z, Chen Z, Tang J and Ang R 2018 Chin. Phys. B 27 017104
[1] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[2] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[3] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[4] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[5] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[6] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[7] Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2
Wen Wen(文雯), Chunhe Dang(党春鹤), Liming Xie(谢黎明). Chin. Phys. B, 2019, 28(5): 058504.
[8] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[9] Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal
Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(1): 017104.
[10] Tunable charge density wave in TiS3 nanoribbons
Ce Huang(黄策), Enze Zhang(张恩泽), Xiang Yuan(袁翔), Weiyi Wang(王伟懿), Yanwen Liu(刘彦闻), Cheng Zhang(张成), Jiwei Ling(凌霁玮), Shanshan Liu(刘姗姗), Faxian Xiu(修发贤). Chin. Phys. B, 2017, 26(6): 067302.
[11] Quasiparticle density of states of 2H-NbSe2 single crystals revealed by low-temperature specific heat measurements according to a two-component model
Yan Jing(闫静), Shan Lei(单磊), Wang Yue(王越), Xiao Zhi-Li(肖志力), and Wen Hai-Hu(闻海虎). Chin. Phys. B, 2008, 17(6): 2229-2235.
No Suggested Reading articles found!