ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point |
Qianyu Qi(齐倩玉)1,2, Yaowei Li(李耀威)1,2, Ting Liu(刘婷)1,2, Peiqing Zhang(张培晴)1,2,3,†, Shixun Dai(戴世勋)1,2,3, and Tiefeng Xu(徐铁峰)1,4 |
1 Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China; 2 Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, China; 3 Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China; 4 Ningbo Institute of Oceanography, Ningbo 315832, China |
|
|
Abstract A novel method for designing chalcogenide long-period fiber grating (LPFG) sensors based on the dual-peak resonance effect of the LPFG near the phase matching turning point (PMTP) is presented. Refractive index sensing in a high-refractive-index chalcogenide fiber is achieved with a coated thinly clad film. The dual-peak resonant characteristics near the PMTP and the refractive index sensing properties of the LPFG are analyzed first by the phase-matching condition of the LPFG. The effects of film parameters and cladding radius on the sensitivity of refractive index sensing are further discussed. The sensor is optimized by selecting the appropriate film parameters and cladding radius. Simulation results show that the ambient refractive index sensitivity of a dual-peak coated thinly clad chalcogenide LPFG at the PMTP can be 2400 nm/RIU, which is significantly higher than that of non-optimized gratings. It has great application potential in the field of chemical sensing and biosensors.
|
Received: 13 January 2022
Revised: 13 March 2022
Accepted manuscript online: 01 April 2022
|
PACS:
|
42.68.Ay
|
(Propagation, transmission, attenuation, and radiative transfer)
|
|
42.81.-i
|
(Fiber optics)
|
|
42.25.Dd
|
(Wave propagation in random media)
|
|
42.81.Pa
|
(Sensors, gyros)
|
|
Fund: Project supported by the Natural Science Foundation of China (Grant Nos. 62075107, 61935006, 62090064, and 62090065) and K. C. Wong Magna Fund in Ningbo University. |
Corresponding Authors:
Peiqing Zhang
E-mail: zhangpeiqing@nbu.edu.cn
|
Cite this article:
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰) Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point 2023 Chin. Phys. B 32 014204
|
[1] Gan W B, Xu Z L, Li Y W, Bi W C, Chu L Y, Qi Q Y, Yang Y T, Zhang P Q, Gan N, Dai S X and Xu T F 2022 Biosens. Bioelectron. 199 113860 [2] Esposito F, Sansone L, Taddei C, Campopiano S, Giordano M and Iadicicco A 2018 Sens. Actuators B Chem. 274 517 [3] Wang R D, Ren Z Y, Kong D P, Hu B W and He Z Q 2020 Opt. Mater. 109 110253 [4] Yu S, Ding L Y, Lin H T, Wu W and Huang J 2019 Biosens. Bioelectron. 146 111760 [5] Tiwari D, Mullaney K, Korposh S, James S W, Lee S W and Tatam R P 2017 Sens. Actuators B Chem. 242 645 [6] Shu X W, Zhang L and Bennion I 2001 Opt. Lett. 26 1755 [7] Shu X W, Zhang L and Bennion I 2002 J. Light. Technol. 20 255 [8] Gu Z T, Ling Q, Lan J L and Gao K 2017 Opt. Laser Technol. 96 249 [9] Gu Z T, Shi Y J and Zhang J T 2012 Opt. Eng. 51 081508 [10] Gu Z T, Xu Y P, Deng C L and Zhang J T 2009 J. Opt. A: Pure Appl. Opt. 11 085701 [11] Wong R Y, Chehura E, Staines S E, James S W and Tatam R P 2014 Appl. Opt. 53 4669 [12] Zhou W, Ran Y L, Yan Z J, Sun Q Z, Liu C and Liu D M 2020 Sensors 20 5978 [13] Guan T Q, Gu Z T, Ling Q and Feng W B 2019 Opt. Laser Technol. 114 20 [14] Chen H Y and Gu Z T 2012 Meas. Sci. Technol. 23 035105 [15] Shu X W and Huang D X 1999 Opt. Commun. 171 65 [16] Patrick H J, Kersey A D and Bucholtz F 1998 J. Light. Technol. 16 1606 [17] Iadicicco A, Campopiano S, Giordano M and Cusano A 2007 Appl. Opt. 46 6945 [18] Su J X, Dai S X and Gan N 2020 Opt. Express 28 184 [19] Shiryaev V S and Churbanov M F 2013 J. Non. Cryst. Solids 377 225 [20] Shang H Y, Zhang M J, Sun D D, Liu Y G, Wang Z, Liu D and Zeng S Q 2021 Results Phys. 28 104552 [21] Sahoo D, Priyadarshini P, Aparimita A, Alagarasan D, Ganesan R, Varadharajaperumal S and Naik R 2021 Opt. Laser Technol. 140 107036 [22] Yang Z, Hu H N, Li Q L, Zhang Z, Niu L, Wu J, Wei T X, Sun Y H, Fang Y M, Wang X S, Yang Z Y, Zhou J F and Wang R P 2021 Opt. Mater. 117 111208 [23] Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D and Luther-Davies B 2010 Opt. Express 18 26635 [24] Bureau B, Boussard C, Cui S, Chahal R, Anne M L, Nazabal V, Sire O, Loréal O, Lucas P, Monbet V, Doualan J L, Camy P, Tariel H, Charpentier F, Quetel L, Adam J L and Lucas J 2014 Opt. Eng. 53 027101 [25] Sharma A K and Gupta J 2018 Opt. Fiber Technol. 41 125 [26] Sharma A K and Kaur B 2018 Opt. Fiber Technol. 43 163 [27] Bureau B, Maurugeon S, Charpentier F, Adam J L, Boussard-Plédel C and Zhang X H 2009 Fiber Integr. Opt. 28 65 [28] Luo B B, Liu Z J, Wang X, Shi S H, Zhong N B, Ma P J, Wu S X, Wu D C, Zhao M F and Liang W W 2021 J. Biophoton. 14 e202000279 [29] Xu B, Huang J, Ding L Y, Zhang H and Zhang H W 2021 IEEE Sens. J. 21 16691 [30] Tan S Y, Lee S C, Kuramitz H and Abd-Rahman F 2019 Optik 194 163040 [31] Yan H H, Wang L, Li S F, Wang J, Zhang H S, Cheng P and Pan Y 2019 Opt. Eng. 58 066109 [32] Khaliq S, W. James S and P. Tatam R 2001 Opt. Lett. 26 1224 [33] Del Villar I, Cruz J L, Socorro A B, Corres J M and Matias I R 2016 Opt. Express 24 17680 [34] Ling Q, Gu Z T, Jiang X L and Gao K 2019 Opt. Commun. 439 187 [35] Wang Z Y, Heflin J R. Stolen R H and Ramachandran S 2005 Opt. Express 13 2808 [36] Chen H Y and Gu Z T 2013 Optik 124 219 [37] Quero G, Crescitelli A, Paladino D, Consales M, Buosciolo A, Giordano M, Cutolo A and Cusano A 2011 Sens. Actuators B Chem. 152 196 [38] Del I, Achaerandio M, Matias, I R and Arregui F J 2005 Opt. Lett. 30 720 [39] Luo B, Liu Z, Wang X, Shi S, Zhong N, Ma P, Wu S, Wu D, Zhao M and Liang W 2021 J. Biophoton. 14 e202000279 [40] Wang R D, Ren Z Y, Kong X D, Kong D P, Hu B W and He Z Q 2020 J. Phys. D: Appl. Phys. 53 065104 [41] Sangeetha M and Madhan D 2020 Opt. Laser Technol. 127 106193 [42] Feng W B, Gu Z T, Ling Q and Sang J G 2017 J. Opt. 19 125703 [43] Ling Q, Gu Z T and Gao K 2018 Appl. Opt. 57 2693 [44] Garg R, Tripathi S M, Thyagarajan K and Bock W J 2013 Sens. Actuators B Chem. 176 1121 [45] Zhou W, Ran Y L, Yan Z J, Sun Q Z, Liu C and Liu D M 2020 Sensors 20 5978 [46] Jiang H P, Gu Z T, Zhou Y, Wu J Y, Li Z Y and Yan Y X 2022 Optik 251 168349 [47] Ling Q and Gu Z T 2019 J. Opt. Soc. Am. B 36 2210 [48] Chen X F, Zhou K M, Zhang L and Bennion I 2007 Appl. Opt. 46 451 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|