CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls |
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) |
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China |
|
|
Abstract Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls is investigated theoretically. It is shown that the Rashba spin-orbit coupling can enhance significantly the spin-flip scattering of charge carriers from a nanosized sharp domain wall whose extension is much smaller than the carrier's Fermi wavelength. When there are more than one domain wall presented in a magnetic semiconductor nanowire, not only the spin-flip scattering of charge carriers from the domain walls but the quantum interference of charge carriers in the intermediate domain regions between neighboring domain walls may play important roles on spin-polarized electronic transport, and in such cases the influences of the Rashba spin-orbit coupling will depend sensitively both on the domain walls' width and the domain walls' separation.
|
Received: 22 October 2017
Revised: 14 January 2018
Accepted manuscript online:
|
PACS:
|
72.10.Bg
|
(General formulation of transport theory)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
Corresponding Authors:
Liang-Bin Hu
E-mail: lbhu26@126.com
|
Cite this article:
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls 2018 Chin. Phys. B 27 047201
|
[1] |
Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
|
[2] |
Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
|
[3] |
Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
|
[4] |
Thomas L, Moriya R, Rettner C and Parkin S S P 2010 Science 330 1810
|
[5] |
Yamanouchi M, Chiba D, Matsukara F and Ohno H 2004 Nature 428 539
|
[6] |
Marrows C H 2005 Adv.Phys. 54 585
|
[7] |
Sedlmayr N, et al. 2011 Nanowires-Fundamental Research, ed. Hashim A (InTech:Croatia)
|
[8] |
Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C and Wang K Y 2017 Acta Phys. Sin. 66 027501
|
[9] |
Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
|
[10] |
Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
|
[11] |
Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
|
[12] |
Wang K Y, Edmonds K W, Irvine A C, Tatara G, De Ranieri E, Wunderlich J, Olejnik K, Rushforth A W, Campion R P, Williams D A, Foxon C T and Gallagher B L 2010 Appl. Phys. Lett. 97 262102
|
[13] |
Li Y Y, Cao Y F, Wei G N, Li Y Y, Ji Y, Wang K Y, Edmonds K W, Campion R P, Rushforth A W, Foxon C T, and Gallagher B L 2013 Appl. Phys. Lett. 103 022401
|
[14] |
Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, and Wang K Y 2016 Sci. Rep. 6 20778
|
[15] |
Emori S, Bono D C and Beach G S D 2012 Appl. Phys. Lett. 101 042405
|
[16] |
Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240
|
[17] |
Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799
|
[18] |
Haazen P P J, Mure E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299
|
[19] |
Emori S, Bauer U, Ahn S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611
|
[20] |
Ryu K S, Thomas L, Yang S H and Parkin S 2013 Nat. Nanotechnol. 8 527
|
[21] |
Wang X and Manchon A 2012 Phys. Rev. Lett. 108 117201
|
[22] |
Kim K W, Seo S M, Ryu J, Lee K J and Lee H W 2012 Phys. Rev. B 85 180404
|
[23] |
Haney P M, Lee H W, Lee K J, Manchon A and Stiles M D 2013 Phys. Rev. B 87 174411
|
[24] |
Stier M, Egger R and Thorwart M 2013 Phys. Rev. B 87 184415
|
[25] |
Brataas A, Kent A D and Ohno H 2012 Nat. Mater. 11 372
|
[26] |
Emori S, Martinez E, Lee K J, Lee H W, Bauer U, Ahn S M, Agrawal P, Bono D C and Beach G S D 2014 Phys. Rev. B 90 184427
|
[27] |
Mikuszeit N, Boulle O, Miron I M, Garello K, Gambardella P, Gaudin G and Buda-Prejbeanu L D 2015 Phys. Rev. B 92 144424
|
[28] |
Nguyen M H, Ralph D C and Buhrman R A 2016 Phys. Rev. Lett. 116 126601
|
[29] |
Reynolds N, Jadaun P, Heron J T, Jermain C L, Gibbons J, Collette R, Buhrman R A, Schlom D G and Ralph D C 2017 Phys. Rev. B 95 064412
|
[30] |
Ou Y X, Pai C F, Shi S J, Ralph D C and Buhrman R A 2016 Phys. Rev. B 94 140414
|
[31] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[32] |
Dugaev V K, Berakdar J and Barnas J 2006 Phys. Rev. Lett. 96 047208
|
[33] |
Oszwaldowski R, Majewski J A and Dietl T 2006 Phys. Rev. B 74 153310
|
[34] |
Nguyen A K, Shchelushkin R V and Brataas A 2006 Phys. Rev. Lett. 97 136603
|
[35] |
Chiba D, Yamanouchi M, Matsukura F, Dietl T and Ohno H 2006 Phys. Rev. Lett. 96 096602
|
[36] |
Nguyen A K, Shchelushkin R V and A. Brataas A 2006 Phys. Rev. Lett. 97 136603
|
[37] |
Sedlmayr N and Berakdar J 2012 Phys. Rev. B 86 024409
|
[38] |
Franken J H, Hoeijmakers M, Swagten H J M and Koopmans B 2012 Phys. Rev. Lett. 108 037205
|
[39] |
Datta S 2002 Electronic transport in mesoscopic systems (Cambridge:Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|