Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047103    DOI: 10.1088/1674-1056/27/4/047103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study

Yi-Jie Zhang(张轶杰)1, Zhi-Peng Yin(尹志鹏)1, Yan Su(苏艳)2, De-Jun Wang(王德君)1
1. Liaoning Integrated Circuit Technology Key Laboratory, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China;
2. School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  An amorphous SiO2/4H-SiC (0001) interface model with carbon dimer defects is established based on density functional theory of the first-principle plane wave pseudopotential method. The structures of carbon dimer defects after passivation by H2 and NO molecules are established, and the interface states before and after passivation are calculated by the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional scheme. Calculation results indicate that H2 can be adsorbed on the O2-C=C-O2 defect and the carbon-carbon double bond is converted into a single bond. However, H2 cannot be adsorbed on the O2-(C=C)'-O2 defect. The NO molecules can be bonded by N and C atoms to transform the carbon-carbon double bonds, thereby passivating the two defects. This study shows that the mechanism for the passivation of SiO2/4H-SiC (0001) interface carbon dimer defects is to convert the carbon-carbon double bonds into carbon dimers. Moreover, some intermediate structures that can be introduced into the interface state in the band gap should be avoided.
Keywords:  4H-SiC      interface defect      density of states      first principle  
Received:  22 July 2017      Revised:  17 January 2018      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474013).
Corresponding Authors:  De-Jun Wang     E-mail:  dwang121@dlut.edu.cn

Cite this article: 

Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君) Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study 2018 Chin. Phys. B 27 047103

[1] Casady J and Johnson R W 1996 Solid State Electron. 39 1409
[2] Saddow S E and Agarwal A K 2004 Advances in silicon carbide processing and applications (Boston:Artech House) pp. 10-11
[3] Yoder M N 1996 IEEE Trans. Electron Dev. 43 1633
[4] Lelis A J, Green R, Habersat D B and El M 2015 IEEE Trans. Electron Dev. 62 316
[5] Roccaforte F, Giannazzo F and Raineri V 2010 J. Phys. D:Appl. Phys. 43 223001
[6] Warren J A, Riddle M E, Graziano D J, Das S, Upadhyayula V K, Masanet E and Cresko J 2015 Environ. Sci. Technol. 49 10294
[7] Afanas'ev V, Stesmans A, Bassler M, Pensl G and Schulz M 2000 Appl. Phys. Lett. 76 336
[8] Agarwal A, Casady J, Rowland L, Valek W, White M and Brandt C 1997 IEEE Electron Dev. Lett. 18 586
[9] Brown D, Downey E, Ghezzo M, Kretchmer J, Krishnamurthy V, Hennessy W and Michon G 1996 Solid State Electron. 39 1531
[10] Saks N, Mani S and Agarwal A 2000 Appl. Phys. Lett. 76 2250
[11] Spitz J, Melloch M, Cooper J and Capano M 1998 Electron Dev. Lett. 19 100
[12] Vathulya V R and White M H 2000 Solid State Electron. 44 309
[13] Yano H, Kimoto T and Matsunami H 2002 Appl. Phys. Lett. 81 301
[14] Kodigala S R, Chattopadhyay S, Overton C, Ardoin I, Gordon B, Johnstone D, Roy D and Barone D 2015 Appl. Surf. Sci. 330 465
[15] Pensl G, Beljakowa S, Frank T, Gao K, Speck F, Seyller T, Ley L, Ciobanu F, Afanasév V and Stesmans A 2008 Phys. Status Solidi B 245 1378
[16] Sun Q J, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Li C Z, Zhao Y L and Zhang Y M 2017 Chin. Phys. B 26 127701
[17] Li W B, Li L, Wang F F, Zheng L, Xia J H, Qin F W, Wang X L, Li Y P, Liu R, Wang D J, Pan Y and Yang F 2017 Chin. Phys. B 26 037104
[18] Yoshikawa M, Saitoh K, Ohshima T, Itoh H, Nashiyama I, Yoshida S, Okumura H, Takahashi Y and Ohnishi K 1996 J. Appl. Phys. 80 282
[19] Afanasév V, Bassler M, Pensl G and Schulz M 1997 Phys. Status Solidi A 162 321
[20] Afanasév V, Ciobanu F, Dimitrijev S, Pensl G and Stesmans A 2004 J. Phys.:Condens. Matter 16 S1839
[21] Fukuda K, Suzuki S, Tanaka T and Arai K 2000 Appl. Phys. Lett. 76 1585
[22] Cantin J L, Von Bardeleben H, Ke Y, Devaty R and Choyke W 2006 Appl. Phys. Lett. 88 092108
[23] Campi J, Shi Y, Luo Y, Yan F and Zhao J H 1999 IEEE Trans. Electron Dev. 46 511
[24] Ueno K, Asai R and Tsuji T 1998 Electron Dev. Lett. 19 244
[25] Wang S, Dhar S, Wang S, Ahyi A, Franceschetti A, Williams J, Feldman L and Pantelides S T 2007 Phys. Rev. Lett. 98 026101
[26] Chung G, Tin C, Williams J, McDonald K, Di Ventra M, Pantelides S, Feldman L and Weller R 2000 Appl. Phys. Lett. 76 1713
[27] Knaup J M, Deák P, Frauenheim T, Gali A, Hajnal Z and Choyke W 2005 Phys. Rev. B 71 235321
[28] Devynck F, Giustino F and Pasquarello A 2005 Microelectron. Eng. 80 38
[29] Li W, Zhao J and Wang D 2015 Solid State Commun. 205 28
[30] Deak P, Knaup J M, Hornos T, Thill C, Gali A and Frauenheim T 2007 J. Phys. D:Appl. Phys. 40 6242
[31] Devynck F and Pasquarello A 2007 Phys. B:Condens. Matter 401 556
[32] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] Alkauskas A, Broqvist P and Pasquarello A 2008 Phys. Rev. Lett. 101 046405
[37] Alkauskas A, Broqvist P and Pasquarello A 2011 Phys. Status Solidi B 248 775
[38] Zhang S, Tomanek D, Louie S G, Cohen M L and Hybertsen M S 1988 Solid State Commun. 66 585
[39] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[40] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[41] Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Ańgyań J G 2006 J. Chem. Phys. 124 154709
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[5] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[6] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[7] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[8] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[9] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[10] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[11] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[12] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[13] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[14] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[15] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
No Suggested Reading articles found!