CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study |
Yi-Jie Zhang(张轶杰)1, Zhi-Peng Yin(尹志鹏)1, Yan Su(苏艳)2, De-Jun Wang(王德君)1 |
1. Liaoning Integrated Circuit Technology Key Laboratory, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China; 2. School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract An amorphous SiO2/4H-SiC (0001) interface model with carbon dimer defects is established based on density functional theory of the first-principle plane wave pseudopotential method. The structures of carbon dimer defects after passivation by H2 and NO molecules are established, and the interface states before and after passivation are calculated by the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional scheme. Calculation results indicate that H2 can be adsorbed on the O2-C=C-O2 defect and the carbon-carbon double bond is converted into a single bond. However, H2 cannot be adsorbed on the O2-(C=C)'-O2 defect. The NO molecules can be bonded by N and C atoms to transform the carbon-carbon double bonds, thereby passivating the two defects. This study shows that the mechanism for the passivation of SiO2/4H-SiC (0001) interface carbon dimer defects is to convert the carbon-carbon double bonds into carbon dimers. Moreover, some intermediate structures that can be introduced into the interface state in the band gap should be avoided.
|
Received: 22 July 2017
Revised: 17 January 2018
Accepted manuscript online:
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61474013). |
Corresponding Authors:
De-Jun Wang
E-mail: dwang121@dlut.edu.cn
|
Cite this article:
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君) Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study 2018 Chin. Phys. B 27 047103
|
[1] |
Casady J and Johnson R W 1996 Solid State Electron. 39 1409
|
[2] |
Saddow S E and Agarwal A K 2004 Advances in silicon carbide processing and applications (Boston:Artech House) pp. 10-11
|
[3] |
Yoder M N 1996 IEEE Trans. Electron Dev. 43 1633
|
[4] |
Lelis A J, Green R, Habersat D B and El M 2015 IEEE Trans. Electron Dev. 62 316
|
[5] |
Roccaforte F, Giannazzo F and Raineri V 2010 J. Phys. D:Appl. Phys. 43 223001
|
[6] |
Warren J A, Riddle M E, Graziano D J, Das S, Upadhyayula V K, Masanet E and Cresko J 2015 Environ. Sci. Technol. 49 10294
|
[7] |
Afanas'ev V, Stesmans A, Bassler M, Pensl G and Schulz M 2000 Appl. Phys. Lett. 76 336
|
[8] |
Agarwal A, Casady J, Rowland L, Valek W, White M and Brandt C 1997 IEEE Electron Dev. Lett. 18 586
|
[9] |
Brown D, Downey E, Ghezzo M, Kretchmer J, Krishnamurthy V, Hennessy W and Michon G 1996 Solid State Electron. 39 1531
|
[10] |
Saks N, Mani S and Agarwal A 2000 Appl. Phys. Lett. 76 2250
|
[11] |
Spitz J, Melloch M, Cooper J and Capano M 1998 Electron Dev. Lett. 19 100
|
[12] |
Vathulya V R and White M H 2000 Solid State Electron. 44 309
|
[13] |
Yano H, Kimoto T and Matsunami H 2002 Appl. Phys. Lett. 81 301
|
[14] |
Kodigala S R, Chattopadhyay S, Overton C, Ardoin I, Gordon B, Johnstone D, Roy D and Barone D 2015 Appl. Surf. Sci. 330 465
|
[15] |
Pensl G, Beljakowa S, Frank T, Gao K, Speck F, Seyller T, Ley L, Ciobanu F, Afanasév V and Stesmans A 2008 Phys. Status Solidi B 245 1378
|
[16] |
Sun Q J, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Li C Z, Zhao Y L and Zhang Y M 2017 Chin. Phys. B 26 127701
|
[17] |
Li W B, Li L, Wang F F, Zheng L, Xia J H, Qin F W, Wang X L, Li Y P, Liu R, Wang D J, Pan Y and Yang F 2017 Chin. Phys. B 26 037104
|
[18] |
Yoshikawa M, Saitoh K, Ohshima T, Itoh H, Nashiyama I, Yoshida S, Okumura H, Takahashi Y and Ohnishi K 1996 J. Appl. Phys. 80 282
|
[19] |
Afanasév V, Bassler M, Pensl G and Schulz M 1997 Phys. Status Solidi A 162 321
|
[20] |
Afanasév V, Ciobanu F, Dimitrijev S, Pensl G and Stesmans A 2004 J. Phys.:Condens. Matter 16 S1839
|
[21] |
Fukuda K, Suzuki S, Tanaka T and Arai K 2000 Appl. Phys. Lett. 76 1585
|
[22] |
Cantin J L, Von Bardeleben H, Ke Y, Devaty R and Choyke W 2006 Appl. Phys. Lett. 88 092108
|
[23] |
Campi J, Shi Y, Luo Y, Yan F and Zhao J H 1999 IEEE Trans. Electron Dev. 46 511
|
[24] |
Ueno K, Asai R and Tsuji T 1998 Electron Dev. Lett. 19 244
|
[25] |
Wang S, Dhar S, Wang S, Ahyi A, Franceschetti A, Williams J, Feldman L and Pantelides S T 2007 Phys. Rev. Lett. 98 026101
|
[26] |
Chung G, Tin C, Williams J, McDonald K, Di Ventra M, Pantelides S, Feldman L and Weller R 2000 Appl. Phys. Lett. 76 1713
|
[27] |
Knaup J M, Deák P, Frauenheim T, Gali A, Hajnal Z and Choyke W 2005 Phys. Rev. B 71 235321
|
[28] |
Devynck F, Giustino F and Pasquarello A 2005 Microelectron. Eng. 80 38
|
[29] |
Li W, Zhao J and Wang D 2015 Solid State Commun. 205 28
|
[30] |
Deak P, Knaup J M, Hornos T, Thill C, Gali A and Frauenheim T 2007 J. Phys. D:Appl. Phys. 40 6242
|
[31] |
Devynck F and Pasquarello A 2007 Phys. B:Condens. Matter 401 556
|
[32] |
Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
|
[33] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[34] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[35] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[36] |
Alkauskas A, Broqvist P and Pasquarello A 2008 Phys. Rev. Lett. 101 046405
|
[37] |
Alkauskas A, Broqvist P and Pasquarello A 2011 Phys. Status Solidi B 248 775
|
[38] |
Zhang S, Tomanek D, Louie S G, Cohen M L and Hybertsen M S 1988 Solid State Commun. 66 585
|
[39] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[40] |
Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
|
[41] |
Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Ańgyań J G 2006 J. Chem. Phys. 124 154709
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|