Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027104    DOI: 10.1088/1674-1056/27/2/027104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures

Hao-Nan Liu(刘浩男)1, Xiao-Xia Suo(索晓霞)1, Lin-Ao Zhang(张林奥)1, Duan Zhang(张端)2, Han-Chun Wu(吴汉春)1, Hong-Kang Zhao(赵宏康)1, Zhao-Tan Jiang(江兆潭)1, Ying-Lan Li(李英兰)1, Zhi Wang(王志)1
1. School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2. Elementary Educational College, Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Capital Normal University, Beijing 100048, China
Abstract  ZnO-based resistive switching device Ag/ZnO/TiN, and its modified structure Ag/ZnO/Zn/ZnO/TiN and Ag/graphene/ZnO/TiN, were prepared. The effects of inserted Zn layers in ZnO matrix and an interface graphene layer on resistive switching characteristics were studied. It is found that metal ions, oxygen vacancies, and interface are involved in the RS process. A thin inserted Zn layer can increase the resistance of HRS and enhance the resistance ratio. A graphene interface layer between ZnO layer and top electrode can block the carrier transport and enhance the resistance ratio to several times. The results suggest feasible routes to tailor the resistive switching performance of ZnO-based structure.
Keywords:  resistive switching      ZnO      graphene      multilayer thin films  
Received:  28 August 2017      Revised:  13 November 2017      Accepted manuscript online: 
PACS:  71.55.Gs (II-VI semiconductors)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  68.65.Pq (Graphene films)  
  68.65.Ac (Multilayers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51002010 and 11274040).
Corresponding Authors:  Zhi Wang     E-mail:  wangzhi@bit.edu.cn
About author:  71.55.Gs; 73.40.Sx; 68.65.Pq; 68.65.Ac

Cite this article: 

Hao-Nan Liu(刘浩男), Xiao-Xia Suo(索晓霞), Lin-Ao Zhang(张林奥), Duan Zhang(张端), Han-Chun Wu(吴汉春), Hong-Kang Zhao(赵宏康), Zhao-Tan Jiang(江兆潭), Ying-Lan Li(李英兰), Zhi Wang(王志) Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures 2018 Chin. Phys. B 27 027104

[1] Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mater. Sci. Eng. R 83 1
[2] Xu N, Liu L, Sun X, Liu X, Han D, Wang Y, Han R, Kang J and Yu B 2008 Appl. Phys. Lett. 92 232112
[3] Tan T, Guo T, Zhihui Wu Z and Liu Z 2016 Chin. Phys. B 25 117306
[4] Tan T T, Chen X, Guo T T and Liu Z T 2013 Chin. Phys. Lett. 30 107302
[5] Yoshida C, Tsunoda K, Noshiro H and Sugiyama Y 2007 Appl. Phys. Lett. 91 223510
[6] Ma H L, Wang Z Q, Xu H Y, Zhang L, Zhao X N, Han M S, Ma J G and Liu Y C 2016 Chin. Phys. B 25 127303
[7] Ismail M, Abbas M W, Rana A M, Talib I, Ahmed E, Nadeem M Y, Tsai T L, Chand U, Shah N A, Hussain M, Aziz A and Bhatti M T 2014 Chin. Phys. B 23 126101
[8] Lai X B, Wang Y H, Shi X L, Li D Y, Liu B Y, Wang R M and Zhang L W 2016 Chin. Phys. Lett. 33 067202
[9] Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, Lu L R and Zhao J S 2014 Acta Phys. Sin. 63 067202(in Chinese)
[10] Ma H L, Wang Z Q, Xu H Y, Zhang L, Zhao X N, Han M S, Ma J G and Liu Y C 2016 Chin. Phys. B 25 127303
[11] Peng H Y, Li G P, Ye J Y, Wei Z P, Zhang Z, Wang D D, Xing G Z and Wu T 2010 Appl. Phys. Lett. 96 192113
[12] Wedig A, Luebben M, Cho D Y, Moors M, Skaja K, Rana V, Hasegawa T, Adepalli K K, Yildiz B, Waser R and Valov I 2015 Nat. Nanotechnol. 11 67
[13] He L, Liao Z M, Wu H C, Tian X X, Xu D S, Cross G L W, Duesberg G S, Shvets I V and Yu D P 2011 Nano Lett. 11 4601
[14] Syrlybekov A, Wu H C, Mauit O, Wu Y C, Maguire P, Khalid A, Coileáin C, Farrell L, Heng C L, Abid M, Liu H, Yang L, Zhang H Z and Shvets I V 2015 Nanoscale 7 14055
[15] Prusakova V, Collini C, Lunelli L, Vanzetti L, Chiappini A, Lorenzelli L, Pederzolli C, Chiasera A, Ferrari M and Diré S 2016 Mater. Design 105 359
[16] Yang Y C, Choi S and Lu 2013 Nano Lett. 13 2908
[17] Gao S, Zeng F, Wang M J, Wang G Y, Song C and Pan F 2015 Phys. Chem. Chem. Phys. 17 12849
[18] Chen C, Gao S, Tang G, Fu H, Wang G, Song C, Zeng F and Pan F 2013 ACS Appl. Mater. Interf. 5 1793
[19] Ma G K, Tang X L, Zhang H W, Zhong Z Y, Li X, Li J and Su H 2017 J. Mater. Sci. 52 238
[20] Lübben M, Karakolis P, Sougleridis VI, Normand P, Dimitrakis P and Valov I 2015 Adv. Mater. 27 6202
[21] Tian H, Chen H Y, Gao B, Yu S, Liang J, Yang Y, Xie D, Kang J, Ren T L, Zhang Y and Wong H S 2013 Nano Lett. 13 651
[22] Zhang L A, Tong S, Liu H N, Li Y L and Wang Z 2016 Mater. Lett. 171 304
[23] Liu H N, Zhou P P, Zhang L A, Liang Z S, Zhao H K and Wang Z 2016 Mater. Lett. 164 509
[24] Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[25] Yun M J, Kim H D and Kim T G 2013 J. Vac. Sci. Technol. B 31 060601
[26] Dong R, Lee D S, Xiang W F, Oh S J, Seong D J, Heo S H, Choi H J, Kwon M J, Seo S N, Pyun M B, Hasan M and Hwang H 2007 Appl. Phys. Lett. 90 042107
[27] Lee J, Du C, Sun K, Kioupakis E and Lu W D 2016 ACS Nano 10 3571
[28] Lee K, Hwang I, Lee S, Oh S and Lee D 2015 Sci. Rep. 5 11279
[29] Sun Y, Yan X, Zheng X, Li Y, Liu Y, Shen Y, Ding Y and Zhang Y 2017 Nano Res. 10 77
[30] Sun Y, Yan X, Zheng X, Li Y, Liu Y, Shen Y and Zhang Y 2016 Nano Res. 9 1116
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[13] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!