Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027201    DOI: 10.1088/1674-1056/27/2/027201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET

Jun Wang(王军)1, Xiao-Mei Peng(彭小梅)1, Zhi-Jun Liu(刘志军)2, Lin Wang(王林)1, Zhen Luo(罗震)1, Dan-Dan Wang(王丹丹)1
1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
2. Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Abstract  Bias non-conservation characteristics of radio-frequency noise mechanism of 40-nm n-MOSFET are observed by modeling and measuring its drain current noise. A compact model for the drain current noise of 40-nm MOSFET is proposed through the noise analysis. This model fully describes three kinds of main physical sources that determine the noise mechanism of 40-nm MOSFET, i.e., intrinsic drain current noise, thermal noise induced by the gate parasitic resistance, and coupling thermal noise induced by substrate parasitic effect. The accuracy of the proposed model is verified by noise measurements, and the intrinsic drain current noise is proved to be the suppressed shot noise, and with the decrease of the gate voltage, the suppressed degree gradually decreases until it vanishes. The most important findings of the bias non-conservative nature of noise mechanism of 40-nm n-MOSFET are as follows. (i) In the strong inversion region, the suppressed shot noise is weakly affected by the thermal noise of gate parasitic resistance. Therefore, one can empirically model the channel excess noise as being like the suppressed shot noise. (ii) In the middle inversion region, it is almost full of shot noise. (iii) In the weak inversion region, the thermal noise is strongly frequency-dependent, which is almost controlled by the capacitive coupling of substrate parasitic resistance. Measurement results over a wide temperature range demonstrate that the thermal noise of 40-nm n-MOSFET exists in a region from the weak to strong inversion, contrary to the predictions of suppressed shot noise model only suitable for the strong inversion and middle inversion region. These new findings of the noise mechanism of 40-nm n-MOSFET are very beneficial for its applications in ultra low-voltage and low-power RF, such as novel device electronic structure optimization, integrated circuit design and process technology evaluation.
Keywords:  nanoscale MOSFET      non-conservation characteristics      noise mechanism      radio frequency  
Received:  09 November 2017      Revised:  12 November 2017      Accepted manuscript online: 
PACS:  72.70.+m (Noise processes and phenomena)  
  72.30.+q (High-frequency effects; plasma effects)  
  73.43.Fj (Novel experimental methods; measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 69901003) and the Scientific Research Fund of Sichuan Provincial Education Department.
Corresponding Authors:  Jun Wang     E-mail:  junwang@swust.edu.cn
About author:  72.70.+m; 72.30.+q; 73.43.Fj

Cite this article: 

Jun Wang(王军), Xiao-Mei Peng(彭小梅), Zhi-Jun Liu(刘志军), Lin Wang(王林), Zhen Luo(罗震), Dan-Dan Wang(王丹丹) Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET 2018 Chin. Phys. B 27 027201

[1] Navid R, Jungemann C, Lee T H, and Dutton R W 2007 J. Appl. Phys. 101 124501
[2] Wang S C, Su p, Chen K M, Liao K H, Chen B Y, Huang S Y, Hung C C and Huang G W 2010 IEEE Trans. Microw. Theory Technol. 58 740
[3] Antonopoulos A, Bucher M, Papathanasiou K, Mavredakis N, Makris N, Sharma R K, Sakalas P and Schroter M 2013 IEEE Trans. Electron Dev. 60 3726
[4] Chan L H K, Yeo K S, Chew K W J and Ong S N 2015 IEEE Trans. Microw. Theory Technol. 63 141
[5] Chalkiadaki, M A and Enz C C 2015 IEEE Trans. Microw. Theory Technol. 63 2173
[6] Jeon J, Lee J, Kim J, Park C H, Lee H, Oh H, Kang H K, Park B G and Shin H 2009 Symposium on VLSI Technology, Jun, 2009, Kyoto, Japan, p. 48
[7] Mahajan V M, Patalay P R, Jindal R P, Shichijo, H, Martin S, Hou, F C, Machala C and Trombley D E 2012 IEEE Trans. Electron Dev. 59 197
[8] Andersson S and Svensson C 2005 Electron. Lett. 41 869
[9] Spathis C, Birbas A and Georgakopoulou 2015 AIP Adv. 5 087114
[10] Tsididis Y 1999 Operation and Modeling of the MOS Transistor (Boston, MA:WCB/McGraw-Hill) p. 66
[11] Wang J, Wang L and Wang D D 2016 Acta Phys. Sin. 65237102(in Chinese)
[12] Ong SN, Yeo K S and Chew W J 2012 Sliod State Electron. 68 32
[13] Smit G D J, Scholten A J, Pijper R M T, Tiemeijer L F, van der Toorn R and Klaassen D B M 2014 IEEE Trans. Electron Dev. 61 245
[14] Shi J, Xiong Y Z, Kang K, Nan L and Lin F 2009 IEEE Trans. Electron Dev. Lett. 30 185
[15] Fabian Z R, Reydezel T T and Roberto S M A 2015 IEEE Trans. Mi-crow. Theory Technol. 63 4255
[16] Ytterdal T, Cheng Y H and Fjeldly T A 2003 Device Modeling for Analog and RF CMOS Circuit Design (John Wiley & Sons, Ltd) Chapter 3
[17] Himmerlfarb M and Belostotski 2016 IEEE Trans. Microw. Theory Technol. 64 258
[18] Wang D D 2017 "Equivalent Circuit Modeling of Nanoscale MOSFET in Millimeter-wave Band", Dissertation (Mianyang:Southwest University of Science and Technology) (in Chinese)
[19] Wang J, Chen H L and Tang G D 2003 Chin. J. Electron. 12 471
[20] Lee C I, Lin W C and Lin Y T 2015 IEEE Trans. Electron Dev. Lett. 36 291
[21] Chan L H K, Yeo K S, Chew K W J, Ong S N, Loo X S, Boon C C and Do M A 2012 IEEE Trans. Electron Dev. Lett. 33 1117
[1] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[2] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[3] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[4] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[5] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[6] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[7] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[8] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
[9] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[10] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[11] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[12] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[13] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[14] Balmer-alpha and Balmer-beta Stark line intensity profiles for high-power hydrogen inductively coupled plasmas
Wang Song-Bai (王松柏), Lei Guang-Jiu (雷光玖), Liu Dong-Ping (刘东平), Yang Si-Ze (杨思泽). Chin. Phys. B, 2014, 23(7): 075201.
[15] Germanium nanoislands grown by radio frequency magnetron sputtering:Annealing time dependent surface morphology and photoluminescence
Alireza Samavati, Z. Othaman, S. K. Ghoshal, R. J. Amjad. Chin. Phys. B, 2013, 22(9): 098102.
No Suggested Reading articles found!