|
|
Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides |
Z W Liang(梁正伟)1,2, P Wu(吴平)1, L C Wang(王利晨)2,4, B G Shen(沈保根)2,3,4,5, and Zhi-Hong Wang(王志宏)2,† |
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China; 4 Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 5 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China |
|
|
Abstract By employing scanning probe microscopy, conductive path and local oxygen-vacancy dynamics have been investigated in crosshatched La0.7Sr0.3MnO3 thin films grown onto flat and vicinal LaAlO3(001) single crystal substrates. Consistent with prior studies, the crosshatch topography was observed first by dynamical force microscopy as the epi-stain started to release with increasing film thickness. Second, by using conductive atomic force microscopy (CAFM), conductive crosshatch and dots (locally aligned or random) were unravelled, however, not all of which necessarily coincided with that shown in the in situ atomic force microscopy. Furthermore, the current-voltage responses were probed by CAFM, revealing the occurrence of threshold and/or memristive switchings. Our results demonstrate that the resistive switching relies on the evolution of the local profile and concentration of oxygen vacancies, which, in the crosshatched films, are modulated by both the misfit and threading dislocations.
|
Received: 20 November 2022
Revised: 15 January 2023
Accepted manuscript online: 18 January 2023
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
61.72.Yx
|
(Interaction between different crystal defects; gettering effect)
|
|
72.80.-r
|
(Conductivity of specific materials)
|
|
Fund: This work was funded by the Science Center of the National Science Foundation of China (Grant No. 52088101), the National Natural Science Foundation of China (Grant Nos. 11474342 and 11174353), the National Key Research and Development Program of China, and the Strategic Priority Research Program B of the Chinese Academy of Sciences. This work was also supported in part by the beamline 08U1A of SSRF. |
Corresponding Authors:
Zhi-Hong Wang
E-mail: z.wang@iphy.ac.cn
|
Cite this article:
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏) Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides 2023 Chin. Phys. B 32 047303
|
[1] Kalinin S V and Spaldin N A 2013 Science 341 858 [2] Schmitt R, Spring J, Korobko R and Rupp J L M 2017 ACS Nano 11 8881 [3] Wang Z H, Zhang Q H, Gregori G, Cristiani G, Yang Y, Li X, Gu L, Sun J R, Shen B G and Habermeier H U 2018 Phys. Rev. Mater. 2 054412 [4] Hus S M, Ge R, Chen P, Liang L, Donnelly G E, Ko W, Huang F, Chiang M, Li A and Akinwande D 2021 Nat. Nanotech. 16 58 [5] Sawa A 2008 Mater. Today 11 28 [6] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632 [7] Slesazeck S and Mikolajick T 2019 Nanotechnology 30 352003 [8] Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q and Yang J J 2020 Nat. Rev. Mater. 5 173 [9] Ielmini D and Wong H S P 2018 Nat. Electron. 1 333 [10] Sangwan V K and Hersam M C 2020 Nat. Nanotech. 15 517 [11] Asif M and Kumar A 2022 Mater. Today Electron. 1 100004 [12] Kishinô S, Ogirima M and Kurata K 1972 J. Electrochem. Soc. 119 617 [13] Chang K H, Gilbala R, Srolovitz D J, Bhattacharya P K and Mansfield J F 1990 J. Appl. Phys. 67 4093 [14] Hsu J W P, Fitzgerald E A, Xie Y H, Silverman P J and Cardillo M J 1992 Appl. Phys. Lett. 61 1293 [15] Chen H, Li Y K, Peng C S, Liu H F, Liu Y L, Huang Q, Zhou J M and Xue Q K 2002 Phys. Rev. B 65 233303 [16] Rovaris F, Zoellner M H, Zaumseil P, Marzegalli A, Di Gaspare L, De Seta M, Schroeder T, Storck P, Schwalb G, Capellini G and Montalenti F 2019 Phys. Rev. B 100 085307 [17] Sánchez F, Lüders U, Herranz G, Infante I C, Fontcuberta J, Garcüa-Cuenca M V, Ferrater C and Varela M 2005 Nanotechnology 16 S190 [18] Kim S G, Wang Y and Chen I W 2006 Appl. Phys. Lett. 89 031905 [19] Wang Z H, Lebedev O I, Van Tendeloo G, Cristiani G and Habermeier H U 2008 Phys. Rev. B 77 115330 [20] Park S, Ryan P, Karapetrova E, Kim J W, Ma J X, Shi J, Freeland J W and Wu W 2009 Appl. Phys. Lett. 95 072508 [21] Tan X L, Chen F, Chen P F, Xu H R, Chen B B, Jin F, Gao G Y and Wu W B 2014 AIP Advances 4 107109 [22] Metlenko V, Ramadan A H H, Gunkel F, Du H, Schraknepper H, Hoffmann-Eifert S, Dittmann R, Waserb R and De Souza R A 2014 Nanoscale 6 12864 [23] Marrocchelli D, Sun L and Yildiz B 2015 J. Am. Chem. Soc. 137 4735 [24] Waldow S P and De Souza R A 2016 ACS Appl. Mater. Interfaces 8 12246 [25] Bagués N, Santiso J, Esser B D, Williams R E A, McComb D W, Konstantinovic Z, Balcells L and Sandiumenge F 2018 Adv. Funct. Mater. 28 1704437 [26] Navickas E, Chen Y, Lu Q, Wallisch W, Huber T M, Bernardi J, Stöger-Pollach M, Friedbacher G, Hutter H, Yildiz B and Flei J 2017 ACS Nano 11 11475 [27] Börgers J M, Kler J, Ran K, Larenz E, Weirich T E, Dittmann R and De Souza R A 2021 Adv. Funct. Mater. 31 2105647 [28] Liang Z W, Wang Z H, Feng Y, Zhang Q H, Wang L C, Wang C, Gu L, Wu P and Shen B G 2019 Phys. Rev. B 99 064304 [29] Wang Z H, Cristiani G and Habermeier H U 2003 Appl. Phys. Lett. 82 3731 [30] Haage T, Zegenhagen J, Li J Q, Habermeier H U, Cardona M, Jooss C, Warthmann R, Forkl A and Kronmüller H 1997 Phys. Rev. B 56 8404 [31] Wang L C, Wang Z H, He S L, Li X, Lin P T, Sun J R and Shen B G 2012 Physica B 407 1196 [32] Schirmeisen A, Anczykowski B and Fuchs H 2005 Nanotribology and Nanomechanics edited by Bhushan B (Heidelberg: Springer) p. 235 [33] Rodenbücher C, Wojtyniak M and Szot K 2019 Electrical Atomic Force Microscopy for Nanoelectronics (Leuven: Springer) p. 29 [34] Wu Y, Suzuki Y, Rüdiger U, Yu J, Kent A D, Nath T K and Eom C B 1999 Appl. Phys. Lett. 75 2295 [35] Bormann D, Desfeux R, Degave F, Khelifa B, Hamet J F and Wolfman J 1999 Phys. Stat. Sol. (B) 215 691 [36] Dediu V A, López J, Matacotta F C, Nozar P, Ruani G, Zamboni R and Taliani C 1999 Phys. Stat. Sol. (B) 215 625 [37] Li T, Wang B, Dai H, Du Y, Yana H and Liu Y 2005 J. Appl. Phys. 98 123505 [38] Dore P, Postorino P, Sacchetti A, Baldini M, Giambelluca R, Angeloni M and Balestrino G 2005 Eur. Phys. J. B 48 255 [39] Merten S, Bruchmann-Bamberg V, Damaschke B, Samwer K and Moshnyaga V 2019 Phys. Rev. Mater. 3 060401(R) [40] Chang S H, Lee J S, Chae S C, Lee S B, Liu C, Kahng B, Kim D W and Noh T W 2009 Phys. Rev. Lett. 102 026801 [41] Guo M Q, Chen Y C, Lin C Y, Chang Y F, Fowler B, Li Q Q, Lee J and Zhao Y G 2017 Appl. Phys. Lett. 110 233504 [42] Nian Y B, Strozier J, Wu N J, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403 [43] Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118 [44] Sandiumenge F, Bagués N, Santiso J, Paradinas M, Pomar A, Konstantinovic Z, Ocal C, Balcells L, Casanove M and Martínez B 2016 Adv. Mater. Interfaces 3 1600106 [45] Szot K, Speier W, Bihlmayer G and Waser R 2006 Nat. Mater. 5 312 [46] Hull D and Bacon D J 2011 Introduction to Dislocations (New York: Elsevier) [47] Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111 [48] Djupmyr M, Cristiani G, Habermeier H U and Albrecht J 2005 Phys. Rev. B 72 220507(R) [49] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (New Jersey: John Wiley & Sons, Inc.) [50] Shimazaki K, Tachikawa S, Ohnishi A and Nagasaka Y 2001 Int. J. Thermophys. 22 1549 [51] Fan D, Li Q and Xuan Y 2011 Int. J. Thermophys. 32 2127 [52] Tikhii A A, Kara-Murza S V, Nikolaenko Y M, Gritskikh V A, Korchikova N V and Zhikharev I V 2015 Inorg. Mater. 51 928 [53] Wang Z H, Yang Y, Gu L, Habermeier H U, Yu R C, Zhao T Y, Sun J R and Shen B G 2012 Nanotechnology 23 265202 [54] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201 [55] Wojtyniak M, Szot K, Wrzalik R, Rodenbücher C, Roth G and Waser R 2013 J. Appl. Phys. 113 083713 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|