Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047303    DOI: 10.1088/1674-1056/acb421
RAPID COMMUNICATION Prev   Next  

Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides

Z W Liang(梁正伟)1,2, P Wu(吴平)1, L C Wang(王利晨)2,4, B G Shen(沈保根)2,3,4,5, and Zhi-Hong Wang(王志宏)2,†
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China;
4 Ningbo Institute of Materials Technology&Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
5 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
Abstract  By employing scanning probe microscopy, conductive path and local oxygen-vacancy dynamics have been investigated in crosshatched La0.7Sr0.3MnO3 thin films grown onto flat and vicinal LaAlO3(001) single crystal substrates. Consistent with prior studies, the crosshatch topography was observed first by dynamical force microscopy as the epi-stain started to release with increasing film thickness. Second, by using conductive atomic force microscopy (CAFM), conductive crosshatch and dots (locally aligned or random) were unravelled, however, not all of which necessarily coincided with that shown in the in situ atomic force microscopy. Furthermore, the current-voltage responses were probed by CAFM, revealing the occurrence of threshold and/or memristive switchings. Our results demonstrate that the resistive switching relies on the evolution of the local profile and concentration of oxygen vacancies, which, in the crosshatched films, are modulated by both the misfit and threading dislocations.
Keywords:  resistive switching      oxygen-vacancy dynamics      crosshatch      dislocation      scanning probe microscopy  
Received:  20 November 2022      Revised:  15 January 2023      Accepted manuscript online:  18 January 2023
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  61.72.Yx (Interaction between different crystal defects; gettering effect)  
  72.80.-r (Conductivity of specific materials)  
Fund: This work was funded by the Science Center of the National Science Foundation of China (Grant No. 52088101), the National Natural Science Foundation of China (Grant Nos. 11474342 and 11174353), the National Key Research and Development Program of China, and the Strategic Priority Research Program B of the Chinese Academy of Sciences. This work was also supported in part by the beamline 08U1A of SSRF.
Corresponding Authors:  Zhi-Hong Wang     E-mail:  z.wang@iphy.ac.cn

Cite this article: 

Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏) Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides 2023 Chin. Phys. B 32 047303

[1] Kalinin S V and Spaldin N A 2013 Science 341 858
[2] Schmitt R, Spring J, Korobko R and Rupp J L M 2017 ACS Nano 11 8881
[3] Wang Z H, Zhang Q H, Gregori G, Cristiani G, Yang Y, Li X, Gu L, Sun J R, Shen B G and Habermeier H U 2018 Phys. Rev. Mater. 2 054412
[4] Hus S M, Ge R, Chen P, Liang L, Donnelly G E, Ko W, Huang F, Chiang M, Li A and Akinwande D 2021 Nat. Nanotech. 16 58
[5] Sawa A 2008 Mater. Today 11 28
[6] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[7] Slesazeck S and Mikolajick T 2019 Nanotechnology 30 352003
[8] Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q and Yang J J 2020 Nat. Rev. Mater. 5 173
[9] Ielmini D and Wong H S P 2018 Nat. Electron. 1 333
[10] Sangwan V K and Hersam M C 2020 Nat. Nanotech. 15 517
[11] Asif M and Kumar A 2022 Mater. Today Electron. 1 100004
[12] Kishinô S, Ogirima M and Kurata K 1972 J. Electrochem. Soc. 119 617
[13] Chang K H, Gilbala R, Srolovitz D J, Bhattacharya P K and Mansfield J F 1990 J. Appl. Phys. 67 4093
[14] Hsu J W P, Fitzgerald E A, Xie Y H, Silverman P J and Cardillo M J 1992 Appl. Phys. Lett. 61 1293
[15] Chen H, Li Y K, Peng C S, Liu H F, Liu Y L, Huang Q, Zhou J M and Xue Q K 2002 Phys. Rev. B 65 233303
[16] Rovaris F, Zoellner M H, Zaumseil P, Marzegalli A, Di Gaspare L, De Seta M, Schroeder T, Storck P, Schwalb G, Capellini G and Montalenti F 2019 Phys. Rev. B 100 085307
[17] Sánchez F, Lüders U, Herranz G, Infante I C, Fontcuberta J, Garcüa-Cuenca M V, Ferrater C and Varela M 2005 Nanotechnology 16 S190
[18] Kim S G, Wang Y and Chen I W 2006 Appl. Phys. Lett. 89 031905
[19] Wang Z H, Lebedev O I, Van Tendeloo G, Cristiani G and Habermeier H U 2008 Phys. Rev. B 77 115330
[20] Park S, Ryan P, Karapetrova E, Kim J W, Ma J X, Shi J, Freeland J W and Wu W 2009 Appl. Phys. Lett. 95 072508
[21] Tan X L, Chen F, Chen P F, Xu H R, Chen B B, Jin F, Gao G Y and Wu W B 2014 AIP Advances 4 107109
[22] Metlenko V, Ramadan A H H, Gunkel F, Du H, Schraknepper H, Hoffmann-Eifert S, Dittmann R, Waserb R and De Souza R A 2014 Nanoscale 6 12864
[23] Marrocchelli D, Sun L and Yildiz B 2015 J. Am. Chem. Soc. 137 4735
[24] Waldow S P and De Souza R A 2016 ACS Appl. Mater. Interfaces 8 12246
[25] Bagués N, Santiso J, Esser B D, Williams R E A, McComb D W, Konstantinovic Z, Balcells L and Sandiumenge F 2018 Adv. Funct. Mater. 28 1704437
[26] Navickas E, Chen Y, Lu Q, Wallisch W, Huber T M, Bernardi J, Stöger-Pollach M, Friedbacher G, Hutter H, Yildiz B and Flei J 2017 ACS Nano 11 11475
[27] Börgers J M, Kler J, Ran K, Larenz E, Weirich T E, Dittmann R and De Souza R A 2021 Adv. Funct. Mater. 31 2105647
[28] Liang Z W, Wang Z H, Feng Y, Zhang Q H, Wang L C, Wang C, Gu L, Wu P and Shen B G 2019 Phys. Rev. B 99 064304
[29] Wang Z H, Cristiani G and Habermeier H U 2003 Appl. Phys. Lett. 82 3731
[30] Haage T, Zegenhagen J, Li J Q, Habermeier H U, Cardona M, Jooss C, Warthmann R, Forkl A and Kronmüller H 1997 Phys. Rev. B 56 8404
[31] Wang L C, Wang Z H, He S L, Li X, Lin P T, Sun J R and Shen B G 2012 Physica B 407 1196
[32] Schirmeisen A, Anczykowski B and Fuchs H 2005 Nanotribology and Nanomechanics edited by Bhushan B (Heidelberg: Springer) p. 235
[33] Rodenbücher C, Wojtyniak M and Szot K 2019 Electrical Atomic Force Microscopy for Nanoelectronics (Leuven: Springer) p. 29
[34] Wu Y, Suzuki Y, Rüdiger U, Yu J, Kent A D, Nath T K and Eom C B 1999 Appl. Phys. Lett. 75 2295
[35] Bormann D, Desfeux R, Degave F, Khelifa B, Hamet J F and Wolfman J 1999 Phys. Stat. Sol. (B) 215 691
[36] Dediu V A, López J, Matacotta F C, Nozar P, Ruani G, Zamboni R and Taliani C 1999 Phys. Stat. Sol. (B) 215 625
[37] Li T, Wang B, Dai H, Du Y, Yana H and Liu Y 2005 J. Appl. Phys. 98 123505
[38] Dore P, Postorino P, Sacchetti A, Baldini M, Giambelluca R, Angeloni M and Balestrino G 2005 Eur. Phys. J. B 48 255
[39] Merten S, Bruchmann-Bamberg V, Damaschke B, Samwer K and Moshnyaga V 2019 Phys. Rev. Mater. 3 060401(R)
[40] Chang S H, Lee J S, Chae S C, Lee S B, Liu C, Kahng B, Kim D W and Noh T W 2009 Phys. Rev. Lett. 102 026801
[41] Guo M Q, Chen Y C, Lin C Y, Chang Y F, Fowler B, Li Q Q, Lee J and Zhao Y G 2017 Appl. Phys. Lett. 110 233504
[42] Nian Y B, Strozier J, Wu N J, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403
[43] Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118
[44] Sandiumenge F, Bagués N, Santiso J, Paradinas M, Pomar A, Konstantinovic Z, Ocal C, Balcells L, Casanove M and Martínez B 2016 Adv. Mater. Interfaces 3 1600106
[45] Szot K, Speier W, Bihlmayer G and Waser R 2006 Nat. Mater. 5 312
[46] Hull D and Bacon D J 2011 Introduction to Dislocations (New York: Elsevier)
[47] Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111
[48] Djupmyr M, Cristiani G, Habermeier H U and Albrecht J 2005 Phys. Rev. B 72 220507(R)
[49] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (New Jersey: John Wiley & Sons, Inc.)
[50] Shimazaki K, Tachikawa S, Ohnishi A and Nagasaka Y 2001 Int. J. Thermophys. 22 1549
[51] Fan D, Li Q and Xuan Y 2011 Int. J. Thermophys. 32 2127
[52] Tikhii A A, Kara-Murza S V, Nikolaenko Y M, Gritskikh V A, Korchikova N V and Zhikharev I V 2015 Inorg. Mater. 51 928
[53] Wang Z H, Yang Y, Gu L, Habermeier H U, Yu R C, Zhao T Y, Sun J R and Shen B G 2012 Nanotechnology 23 265202
[54] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201
[55] Wojtyniak M, Szot K, Wrzalik R, Rodenbücher C, Roth G and Waser R 2013 J. Appl. Phys. 113 083713
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[3] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[4] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[5] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[6] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[7] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[8] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[9] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[10] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[11] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[12] Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩). Chin. Phys. B, 2021, 30(11): 118701.
[13] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[14] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[15] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
No Suggested Reading articles found!