Special Issue:
TOPICAL REVIEW — Nanolasers
|
|
|
Applications of nanostructures in wide-field, label-free super resolution microscopy |
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青) |
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Super resolution imaging capable of resolving details beyond the diffraction limit is highly desired in many scientific and application fields, including bio-medicine, nanomaterial science, and opto-electronic integration. Up to now, many different methods have been proposed, among which wide-field, label-free super resolution microscopy is indispensable due to its good applicability to diverse sample types, large field of view (FOV), and high imaging speed. In recent years, nanostructures have made a crucial contribution to the wide-field, label-free subdiffraction microscopy, with various working mechanisms and configuration designs. This review summarizes the recent applications of the nanostructures in the wide-field, label-free super resolution microscopy, with the emphasis on the designs of hyperlens with hyperbolic dispersion, microsphere with “nano-jets”, and nanowire ring illumination microscopy based on spatial frequency shift effect. The bottlenecks of the current techniques and possible solutions are also discussed.
|
Received: 11 June 2018
Revised: 31 August 2018
Accepted manuscript online:
|
PACS:
|
87.64.M-
|
(Optical microscopy)
|
|
87.57.cf
|
(Spatial resolution)
|
|
78.67.Uh
|
(Nanowires)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61735017 and 51672245), the Zhejiang Provincial Natural Science Foundation of China (Grant No. R17F050003), the National Key Basic Research Program of China (Grant No. 2015CB352003), the Fundamental Research Funds for the Central Universities, China, the Program for Zhejiang Leading Team of S&T Innovation, China, the Cao Guangbiao Advanced Technology Program, China, and First-class Universities and Academic Programs, China. |
Corresponding Authors:
Qing Yang
E-mail: qingyang@zju.edu.cn
|
Cite this article:
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青) Applications of nanostructures in wide-field, label-free super resolution microscopy 2018 Chin. Phys. B 27 118704
|
[1] |
Kner P, Chhun B B, Griffis E R, Winoto L and Gustafsson M G L 2009 Nat. Methods 6 339
|
[2] |
Ponsetto J L, Bezryadina A, Wei F, Onishi K, Shen H, Huang E, Ferrari L, Ma Q, Zou Y and Liu Z 2017 ACS Nano 11 5344
|
[3] |
Schneider J, Zahn J, Maglione M, Sigrist S J, Marquard J, Chojnacki J, Krausslich H G, Sahl S J, Engelhardt J and Hell S W 2015 Nat. Methods 12 827
|
[4] |
Kawata S, Inouye Y and Verma P 2009 Nat. Photon. 3 388
|
[5] |
Liu X, Wong T T W, Shi J, Ma J, Yang Q and Wang L V 2018 Opt. Lett. 43 947
|
[6] |
Wilson T 2011 J. Microsc. 244 113
|
[7] |
Wei F and Liu Z 2010 Nano. Lett. 10 2531
|
[8] |
Klar T A, Jakobs S, Dyba M, Egner A and Hell S W 2000 Proc. Natl. Acad. Sci. USA 97 8206
|
[9] |
Rittweger E, Han K Y, Irvine S E, Eggeling C and Hell S W 2009 Nat. Photon. 3 144
|
[10] |
Betzig E 1995 Opt. Lett. 20 237
|
[11] |
Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, LippincottSchwartz J and Hess H F 2006 Science 313 1642
|
[12] |
Dickson R M, Cubitt A B, Tsien R Y and Moerner W E 1997 Nature 388 355
|
[13] |
Zhuang X 2009 Nat. Photon. 3 365
|
[14] |
Diezmann A v, Shechtman Y and Moerner W E 2017 Chem. Rev. 117 7244
|
[15] |
Hecht B, Sick B, Wild U P, Deckert V, Zenobi R, Martin O J F and Pohl D W 2000 J. Chem. Phys. 112 7761
|
[16] |
Wang L and Xu X G 2015 Nat. Commun. 6 8973
|
[17] |
Ma D D D, Lee C S, Au F C K, Tong S Y and Lee S T 2003 Science 299 1874
|
[18] |
Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816
|
[19] |
Law M, Greene L E, Johnson J C, Saykally R and Yang P 2005 Nat. Mater. 4 455
|
[20] |
Kolmakov A, Zhang Y, Cheng G and Moskovits M 2003 Adv. Mater. 15 997
|
[21] |
Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B 2011 Nature 470 369
|
[22] |
Lee H, Liu Z, Xiong Y, Sun C and Zhang X 2007 Opt. Express 15 15886
|
[23] |
Liu Z, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
|
[24] |
Sun J, Shalaev M I and Litchinitser N M 2015 Nat. Commun. 6 7201
|
[25] |
Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
|
[26] |
Jacob Z, Alekseyev L V and Narimanov E 2007 J. Opt. Soc. Am. A 24 A52
|
[27] |
Kildishev A V and Narimanov E E 2007 Opt. Lett. 32 3432
|
[28] |
Zhang W, Chen H and Moser H O 2011 Appl. Phys. Lett. 98 073501
|
[29] |
Smith E J, Liu Z, Mei Y F and Schmidt O G 2009 Appl. Phys. Lett. 95 083104
|
[30] |
Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G and Zhang X 2010 Nat. Commun. 1 143
|
[31] |
Cang H, Salandrino A, Wang Y and Zhang X 2015 Nat. Commun. 6 7942
|
[32] |
Byun M, Lee D, Kim M, Kim Y, Kim K, Ok J G, Rho J and Lee H 2017 Sci. Rep. 7 46314
|
[33] |
Lee D, Kim Y D, Kim M, So S, Choi H J, Mun J, Nguyen D M, Badloe T, Ok J G, Kim K, Lee H and Rho J 2018 ACS Photon. 5 2549
|
[34] |
Li H, Fu L, Frenner K and Osten W 2018 Opt. Express 26 10888
|
[35] |
Li H, Fu L, Frenner K and Osten W 2018 Opt. Express 26 19574
|
[36] |
Ma C and Liu Z 2010 Appl. Phys. Lett. 96 183103
|
[37] |
Ma C and Liu Z 2011 J. NanoPhoton. 5 051604
|
[38] |
Mason D R, Jouravlev M V and Kim K S 2010 Opt. Lett. 35 2007
|
[39] |
Lee J Y, Hong B H, Kim W Y, Min S K, Kim Y, Jouravlev M V, Bose R, Kim K S, Hwang I C, Kaufman L J, Wong C W, Kim P and Kim K S 2009 Nature 460 498
|
[40] |
Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z and Hong M 2011 Nat. Commun. 2 218
|
[41] |
Fan W, Yan B, Wang Z and Wu L 2016 Sci. Adv. 2 e1600901
|
[42] |
Gustafsson M G L 2000 J. Microsc. 198 82
|
[43] |
Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E and Liu Z 2014 Nano. Lett. 14 4634
|
[44] |
Chowdhury S, Dhalla A H and Izatt J 2012 Biomed. Opt. Express 3 1841
|
[45] |
Chowdhury S, Eldridge W J, Wax A and Izatt J A 2017 Biomed. Opt. Express 8 2496
|
[46] |
Chowdhury S, Eldridge W J, Wax A and Izatt J 2017 Optica 4 537
|
[47] |
Hao X, Kuang C, Li Y and Liu X 2013 Opt. Lett. 38 2455
|
[48] |
Olshausen P v and Rohrbach A 2013 Opt. Lett. 38 4066
|
[49] |
Hao X, Liu X, Kuang C, Li Y, Ku Y, Zhang H, Li H and Tong L 2013 Appl. Phys. Lett. 102 013104
|
[50] |
Liu X, Kuang C, Hao X, Pang C, Xu P, Li H, Liu Y, Yu C, Xu Y, Nan D, Shen W, Fang Y, He L, Liu X and Yang Q 2017 Phy. Rev. Lett. 118 076101
|
[51] |
Pang C, Liu X, Zhuge M, Liu X, Somekh M G, Zhao Y, Jin D, Shen W, Li H, Wu L, Wang C, Kuang C and Yang Q 2017 Opt. Lett. 42 4569
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|