Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118704    DOI: 10.1088/1674-1056/27/11/118704
Special Issue: TOPICAL REVIEW — Nanolasers
TOPICAL REVIEW—Nanolasers Prev   Next  

Applications of nanostructures in wide-field, label-free super resolution microscopy

Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青)
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  

Super resolution imaging capable of resolving details beyond the diffraction limit is highly desired in many scientific and application fields, including bio-medicine, nanomaterial science, and opto-electronic integration. Up to now, many different methods have been proposed, among which wide-field, label-free super resolution microscopy is indispensable due to its good applicability to diverse sample types, large field of view (FOV), and high imaging speed. In recent years, nanostructures have made a crucial contribution to the wide-field, label-free subdiffraction microscopy, with various working mechanisms and configuration designs. This review summarizes the recent applications of the nanostructures in the wide-field, label-free super resolution microscopy, with the emphasis on the designs of hyperlens with hyperbolic dispersion, microsphere with “nano-jets”, and nanowire ring illumination microscopy based on spatial frequency shift effect. The bottlenecks of the current techniques and possible solutions are also discussed.

Keywords:  optical microscopy      spatial resolution      nanowire      metamaterials  
Received:  11 June 2018      Revised:  31 August 2018      Accepted manuscript online: 
PACS:  87.64.M- (Optical microscopy)  
  87.57.cf (Spatial resolution)  
  78.67.Uh (Nanowires)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61735017 and 51672245), the Zhejiang Provincial Natural Science Foundation of China (Grant No. R17F050003), the National Key Basic Research Program of China (Grant No. 2015CB352003), the Fundamental Research Funds for the Central Universities, China, the Program for Zhejiang Leading Team of S&T Innovation, China, the Cao Guangbiao Advanced Technology Program, China, and First-class Universities and Academic Programs, China.

Corresponding Authors:  Qing Yang     E-mail:  qingyang@zju.edu.cn

Cite this article: 

Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青) Applications of nanostructures in wide-field, label-free super resolution microscopy 2018 Chin. Phys. B 27 118704

[1] Kner P, Chhun B B, Griffis E R, Winoto L and Gustafsson M G L 2009 Nat. Methods 6 339
[2] Ponsetto J L, Bezryadina A, Wei F, Onishi K, Shen H, Huang E, Ferrari L, Ma Q, Zou Y and Liu Z 2017 ACS Nano 11 5344
[3] Schneider J, Zahn J, Maglione M, Sigrist S J, Marquard J, Chojnacki J, Krausslich H G, Sahl S J, Engelhardt J and Hell S W 2015 Nat. Methods 12 827
[4] Kawata S, Inouye Y and Verma P 2009 Nat. Photon. 3 388
[5] Liu X, Wong T T W, Shi J, Ma J, Yang Q and Wang L V 2018 Opt. Lett. 43 947
[6] Wilson T 2011 J. Microsc. 244 113
[7] Wei F and Liu Z 2010 Nano. Lett. 10 2531
[8] Klar T A, Jakobs S, Dyba M, Egner A and Hell S W 2000 Proc. Natl. Acad. Sci. USA 97 8206
[9] Rittweger E, Han K Y, Irvine S E, Eggeling C and Hell S W 2009 Nat. Photon. 3 144
[10] Betzig E 1995 Opt. Lett. 20 237
[11] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, LippincottSchwartz J and Hess H F 2006 Science 313 1642
[12] Dickson R M, Cubitt A B, Tsien R Y and Moerner W E 1997 Nature 388 355
[13] Zhuang X 2009 Nat. Photon. 3 365
[14] Diezmann A v, Shechtman Y and Moerner W E 2017 Chem. Rev. 117 7244
[15] Hecht B, Sick B, Wild U P, Deckert V, Zenobi R, Martin O J F and Pohl D W 2000 J. Chem. Phys. 112 7761
[16] Wang L and Xu X G 2015 Nat. Commun. 6 8973
[17] Ma D D D, Lee C S, Au F C K, Tong S Y and Lee S T 2003 Science 299 1874
[18] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816
[19] Law M, Greene L E, Johnson J C, Saykally R and Yang P 2005 Nat. Mater. 4 455
[20] Kolmakov A, Zhang Y, Cheng G and Moskovits M 2003 Adv. Mater. 15 997
[21] Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B 2011 Nature 470 369
[22] Lee H, Liu Z, Xiong Y, Sun C and Zhang X 2007 Opt. Express 15 15886
[23] Liu Z, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
[24] Sun J, Shalaev M I and Litchinitser N M 2015 Nat. Commun. 6 7201
[25] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[26] Jacob Z, Alekseyev L V and Narimanov E 2007 J. Opt. Soc. Am. A 24 A52
[27] Kildishev A V and Narimanov E E 2007 Opt. Lett. 32 3432
[28] Zhang W, Chen H and Moser H O 2011 Appl. Phys. Lett. 98 073501
[29] Smith E J, Liu Z, Mei Y F and Schmidt O G 2009 Appl. Phys. Lett. 95 083104
[30] Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G and Zhang X 2010 Nat. Commun. 1 143
[31] Cang H, Salandrino A, Wang Y and Zhang X 2015 Nat. Commun. 6 7942
[32] Byun M, Lee D, Kim M, Kim Y, Kim K, Ok J G, Rho J and Lee H 2017 Sci. Rep. 7 46314
[33] Lee D, Kim Y D, Kim M, So S, Choi H J, Mun J, Nguyen D M, Badloe T, Ok J G, Kim K, Lee H and Rho J 2018 ACS Photon. 5 2549
[34] Li H, Fu L, Frenner K and Osten W 2018 Opt. Express 26 10888
[35] Li H, Fu L, Frenner K and Osten W 2018 Opt. Express 26 19574
[36] Ma C and Liu Z 2010 Appl. Phys. Lett. 96 183103
[37] Ma C and Liu Z 2011 J. NanoPhoton. 5 051604
[38] Mason D R, Jouravlev M V and Kim K S 2010 Opt. Lett. 35 2007
[39] Lee J Y, Hong B H, Kim W Y, Min S K, Kim Y, Jouravlev M V, Bose R, Kim K S, Hwang I C, Kaufman L J, Wong C W, Kim P and Kim K S 2009 Nature 460 498
[40] Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z and Hong M 2011 Nat. Commun. 2 218
[41] Fan W, Yan B, Wang Z and Wu L 2016 Sci. Adv. 2 e1600901
[42] Gustafsson M G L 2000 J. Microsc. 198 82
[43] Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E and Liu Z 2014 Nano. Lett. 14 4634
[44] Chowdhury S, Dhalla A H and Izatt J 2012 Biomed. Opt. Express 3 1841
[45] Chowdhury S, Eldridge W J, Wax A and Izatt J A 2017 Biomed. Opt. Express 8 2496
[46] Chowdhury S, Eldridge W J, Wax A and Izatt J 2017 Optica 4 537
[47] Hao X, Kuang C, Li Y and Liu X 2013 Opt. Lett. 38 2455
[48] Olshausen P v and Rohrbach A 2013 Opt. Lett. 38 4066
[49] Hao X, Liu X, Kuang C, Li Y, Ku Y, Zhang H, Li H and Tong L 2013 Appl. Phys. Lett. 102 013104
[50] Liu X, Kuang C, Hao X, Pang C, Xu P, Li H, Liu Y, Yu C, Xu Y, Nan D, Shen W, Fang Y, He L, Liu X and Yang Q 2017 Phy. Rev. Lett. 118 076101
[51] Pang C, Liu X, Zhuge M, Liu X, Somekh M G, Zhao Y, Jin D, Shen W, Li H, Wu L, Wang C, Kuang C and Yang Q 2017 Opt. Lett. 42 4569
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[7] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[8] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[9] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[10] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[13] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[14] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[15] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
No Suggested Reading articles found!