Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098101    DOI: 10.1088/1674-1056/ac7f8c
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Hydrodynamic metamaterials for flow manipulation: Functions and prospects

Bin Wang(王斌)1,† and Jiping Huang (黄吉平)2,‡
1 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
2 Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures(MOE), Fudan University, Shanghai 200438, China
Abstract  As an emerging branch in the area of flow control, hydrodynamic metamaterials have received considerable attention because of their novel flow control capabilities. In this review, we present prominent studies on hydrodynamic metamaterials in porous media, non-porous media, creeping flows, and non-creeping flows from several perspectives. In particular, for hydrodynamic cloaking metamaterials, we unify the descriptive form of transformation hydrodynamics for hydrodynamic metamaterials in porous and non-porous media by the hydrodynamic governing equations. Finally, we summarize and outlook the current shortcomings and challenges of current hydrodynamic metamaterials and propose possible future research directions, especially for microfluidics, exotic fluids, hydrodynamic cloaking in high Reynolds numbers, and turbulence.
Keywords:  flow control      metamaterials      hydrodynamic cloaks      drag reduction      liquid diodes  
Received:  15 April 2022      Revised:  27 June 2022      Accepted manuscript online:  08 July 2022
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  47.85.L- (Flow control)  
  81.05.Zx (New materials: theory, design, and fabrication) (Drag reduction)  
Fund: Project supported by Shanghai Science and Technology Development Funds (Grant No. 22YF1410600), the National Natural Science Foundation of China (Grant Nos. 11725521 and 12035004), and the Fund from the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1414700).
Corresponding Authors:  Bin Wang, Jiping Huang     E-mail:;

Cite this article: 

Bin Wang(王斌) and Jiping Huang (黄吉平) Hydrodynamic metamaterials for flow manipulation: Functions and prospects 2022 Chin. Phys. B 31 098101

[1] Gad-el-Hak M 2001 J. Aircraft 38 402
[2] Gad-el-Hak M, Pollard A and Bonnet J P (Eds.) 2003 Flow control:fundamentals and practices, Vol. 53 (Springer Science and Business Media)
[3] Yun H, Kim K and Lee W G 2013 Biofabrication 5 022001
[4] Sackmann E K, Fulton A L and Beebe D J 2014 Nature 507 181
[5] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[6] Schurig D, Mock J J, Justice B J, Cummer J B, Starr A F and Smith D R 2006 Science 314 977
[7] Gömöry F, Solovyov M, Šouc J, Navau C, Prat-Camps J and Sanchez A 2012 Science 335 1466
[8] Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
[9] Zhang S, Xia C and Fang N 2011 Phys. Rev. Lett. 106 024301
[10] Bückmann T, Thiel M, Kadic M, Schittny R and Wegener M 2014 Nat. Commun. 5 4130
[11] Bückmann T, Kadic M, Schittny R and Wegener M 2015 Proc. Natl. Acad. Sci. USA 112 4930
[12] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[13] Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207
[14] Bear J 1988 Dynamics of fluids in porous media, Courier Corporation
[15] Urzhumov Y A and Smith D R 2011 Phys. Rev. Lett. 107 074501
[16] Urzhumov Y A and Smith D R 2012 Phys. Rev. E 86 056313
[17] Bowen P T, Smith D R and Urzhumov Y A 2015 Phys. Rev. E 92 063030
[18] Culver D R, Dowell E, Smith D, Urzhumov Y and Varghese A 2016 Journal of Fluids 2016 1
[19] Dai G, Shang J and Huang J P 2018 Phys. Rev. E 97 022129
[20] Dai G and Huang J P 2018 J. Appl. Phys. 124 235103
[21] Yang F, Xu L and Huang J P 2019 ES Energy Environ. 6 45
[22] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502
[23] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[24] Xu L, Xu G, Huang J and Qiu C W 2022 Phys. Rev. Lett 128 145901
[25] Zhang Z, Xu L and Huang J 2022 Adv. Theory Simul. 5 2100375
[26] Zhang Z and Huang J 2022 Chin. Phys. Lett. 39 075201
[27] Dennis B H and Dulikravich G S 2001 Finite Elem. Anal. Des. 37 349
[28] Culver D and Urzhumov Y 2017 Phys. Rev. E 96 063107
[29] Park J, Youn J R and Song Y S 2019 Phys. Rev. Lett. 123 074502
[30] Wang B, Shih T M, Xu L J and Huang J P 2021 Phys. Rev. Appl. 15 034014
[31] Morton K J, Loutherback K, Inglis D W, Tsui O K, Sturm J C, Chou S Y and Austin R H 2008 P. Natl. Acad. Sci. 105 7434
[32] Hele-Shaw 1898 Nature 58 520
[33] Park J, Youn J R and Song Y S 2021 Extreme Mech. Lett. 42 101061
[34] Park J, Youn J R and Song Y S 2019 Phys. Rev. Appl. 12 061002
[35] Wang H, Yao N Z, Wang B and Wang X S 2022 Acta Phys. Sin. 71 104701 (in Chinese)
[36] Yao N Z, Wang H, Wang B and Wang X S 2022 Acta Phys. Sin. 71 104701 (in Chinese)
[37] Park J and Song Y S 2020 J. Fluids Struct. 98 103136
[38] Zou R 2020 Potential of Hydrodynamic Metamaterial Cloak for Drag Reduction, Master Dissertation (US:Washington University)
[39] Sklan S R and Li B 2018 Sci. Rep. 8 1
[40] Zareei A and Alam M R 2015 J. Fluid Mech. 778 273
[41] Wang B, Shih T M and Huang J P 2021 Appl. Therm. Eng. 190 116726
[42] Wang H, Yao N Z, Wang B, Shih T M and Wang X S 2022 Appl. Therm. Eng. 206 118012
[43] Dai G, Zhou Y, Wang J, Yang F, Qu T and Huang J 2022 Phys. Rev. Appl. 17 044006
[44] Park J and Song Y S 2020 Extreme Mechanics Letters 40 100908
[45] Tay F, Zhang Y, Xu H, Goh H, Luo Y and Zhang B L 2019 arXiv:1908.07169[]
[46] Boyadjian O, Boulais É and Gervais T 2020 arXiv:2012.09931[physics.flu-dyn]
[47] Ren F, Wang C and Tang H 2021 Phy. Fluids 33 093602
[48] Boyko E, Bacheva V, Eigenbrod M, Paratore F, Gat D A, Hardt S and Bercovici M 2021 Phys. Rev. Lett. 126 184502
[49] Caplan P 1974 Bulletin of Concerned Asian Scholars 6 28
[50] Weiss E B 1975 Survival 17 64
[51] Doel R E and Harper K C 2006 Osiris 21 66
[52] Chossudovsky M 2004 Global Research 27
[53] Darhuber A A and Troian S M 2005 Annu. Rev. Fluid Mech. 37 425
[54] Chaudhury M K, Chakrabarti A and Daniel S 2015 Langmuir 31 9266
[55] Xu X and Qian T 2012 Phys. Rev. E 85 051601
[56] Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K and Wang Z 2016 Nat. Phys. 12 606
[57] Zhang S, Huang J, Chen Z, Yang S and Lai Y 2019 J. Mater. Chem. A 7 38
[58] Cira N J, Benusiglio A and Prakash M 2015 Nature 519 446
[59] Wong W S, Li M, Nisbet D R, Craig V S, Wang Z and Tricoli A 2016 Sci. Adv. 2 e1600417
[60] Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M and Poulikakos D 2015 Nature 527 82
[61] Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C and Quéré D 2018 Nat. Phys. 14 1188
[62] Huang J Y, Lo Y C, Niu J J, et al. 2013 Nat. Nanotech. 8 277
[63] Li J, Li J, Sun J, Feng S and Wang Z 2019 Adv. Mater. 31 1806501
[64] Chaudhury M K and Whitesides G M 1992 Science 256 1539
[65] Li L, Mo J and Li Z 2015 Phys. Rev. Lett. 115 134503
[66] Li J, Song Y, Zheng H, Feng S, Xu W and Wang Z 2019 Soft Matter 15 1902
[67] Li J, Zhou X, Li J, Che L, Yao J, McHale G, Chaudhury M and Wang Z 2017 Sci. Adv. 3 eaao3530
[68] Iwamatsu M 2022 Phys. Fluids 34 047119
[69] Song Y, Lai H, Jiao X, Liu P, Hu D, Kang H and Cheng Z 2022 Sci. China Mater. 65 2591
[70] Hou X, Hu Y, Grinthal A, Khan M and Aizenberg J 2015 Nature 519 70
[71] Hou X 2020 Natl. Sci. Rev. 7 9
[72] Han Y, Zhang Y, Zhang M, Chen B, Chen X and Hou X 2021 Fundamental Research 1 800
[73] Dunne P, Adachi T, Dev A A, Sorrenti A, Giacchetti L, Bonnin A and Hermans T M 2020 Nature 581 58
[74] Lv X, Wang W and Yu H 2019 Adv. Eng. Mater. 21 1900977
[75] Tian X, Jin H, Sainio J, Ras R H and Ikkala O 2014 Advanced Functional Materials 24 6023
[76] Chen C, Shi L A, Huang Z, et al. 2019 Adv. Mater. Interfaces 6 1900297
[77] Song J, Li S, Zhao C, et al. 2018 Nanoscale 10 1920
[78] Lin R B, Xiang S, Zhou W and Chen B 2020 Chem 6 337
[79] Sheng Q, Xie Y, Li J, Wang X and Xue J 2017 Chem. Comm. 53 6125
[80] Xu W, Zheng H, Liu Y, Zhou, X, Zhang C, Song Y and Wang Z 2020 Nature 578 392
[81] Chen X, Shen J, Hu Z and Huo X 2016 Biomed. Microdevices 18 1
[82] Fan Y, Sheng Z, Chen J, Pan H, Chen B, Wu F and Hou X 2019 Angewandte Chemie 131 4007
[83] Yuan Y, Brouchon J, Calvo-Calle J M, Xia J, Sun L, Zhang X and Heyman J A 2020 Lab on a Chip 20 1513
[84] Liu W, Wang M, Sheng Z, Zhang Y, Wang S, Qiao L and Hou X 2019 Ind. Eng. Chem. Res. 58 11976
[85] Liu Z, Wang W, Xie R, Ju X J and Chu L Y 2016 Chem. Soc. Rev. 45 460
[86] Yun H, Kim K and Lee W G 2013 Biofabrication 5 022001
[87] Herrero M, Mendiola J A, Cifuentes A and Ibánez E 2010 J. Chromatogr. A 1217 2495
[88] McHugh M and Krukonis V 2013 Supercritical fluid extraction:principles and practice (Elsevier)
[89] Paulaitis M E, Krukonis V J, Kurnik R T and Reid R C 1983 Rev.Chem. Eng. 1 179
[90] Putterman S J 1974 Superfluid Hydrodynamics (Elsevier)
[91] Ambegaokar V, Halperin B I, Nelson D R and Siggia E D 1980 Phys. Rev. B 21 1806
[92] Bishop D J and Reppy J D 1978 Phys. Rev. Lett. 40 1727
[93] Reppy J D 1992 J. Low Temp. Phys. 87 205
[94] Zhang J, Yao Y, Sheng L and Liu J 2015 Adv. Mater. 27 2648
[95] Wang H, Yao Y, He Z, Rao W, Hu L, Chen S and Liu J 2019 Adv. Mater. 31 1901337
[96] Sheng L, Zhang J and Liu J 2014 Adv. Mater 26 6036
[97] Kalantar-Zadeh K, Tang J, Daeneke T, O'Mullane A P, Stewart L A, Liu J and Dickey M D 2019 ACS Nano 13 7388
[98] Norris A N 2009 J. Acoust. Soc. Am. 125 839
[99] Pendry J B and Li J 2008 New J. Phys. 10 115032
[100] Popa B I, Wang W, Konneker A, Cummer S A, Rohde C A, Martin T P and Guild M D 2016 J. Acoust. Soc. Am. 139 3325
[101] Zhao B, MacMinn C W and Juanes R 2016 P. Natl. Acad. Sci. 113 10251
[102] Jansen J D, Bosgra O H and Van den Hof P M 2008 J. Process Contr. 18 846
[103] Chen Z, Xu J and Wang Y 2019 Chem. Eng. Sci. 202 1
[104] Han T and Qiu C W 2016 J. Optics 18 044003
[105] Yang S, Wang J, Dai G L, Yang F B and Huang J P 2021 Phys. Rep. 908 1
[106] Li Y, Li W, Han T, Zheng X, Li J, Li B and Qiu C W 2021 Nat. Rev. Mater. 6 488
[107] Hu R, Xi W, Liu Y, Tang K, Song J, Luo X and Qiu C W 2021 Mater. Today 45 120
[108] Huang J P 2020 Theoretical Thermotics:Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer)
[109] Yeung W S and Yang R J 2022 Introduction to Thermal Cloaking:Theory and Analysis in Conduction and Convection (Springer)
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[3] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[6] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[7] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[8] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[9] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[10] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[11] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[12] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[13] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[14] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[15] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
No Suggested Reading articles found!