Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058401    DOI: 10.1088/1674-1056/ac2b1c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications

Hema O. Ali1, Asaad M. Al-Hindawi1, Yadgar I. Abdulkarim2,†, Ekasit Nugoolcharoenlap3, Tossapol Tippo3, Fatih Özkan Alkurt4, Olcay Altıntaş4, and Muharrem Karaaslan4
1 Department of Communication Engineering, Sulaimani Polytechnic University, Sulaimani 46001, Iraq;
2 Medical Physics Department, College of Medicals and Applied Science, Charmo University, Chamchamal 46023, Sulaimania, Iraq;
3 Department of Telecommunication Engineering, Faculty of Engineering, Rajamangala University of Technology Rattanakosin, Phutthamonthon, Nakornprathom 73170, Thailand;
4 Department of Electrical and Electronics Engineering, Iskenderun Technical University, Hatay 31100, Turkey
Abstract  We develop a simple new design for a multi-band metamaterial absorber (MTMA) for radar applications. Computer Simulation Technology (CST) Studio Suite 2018 was used for the numerical analysis and absorption study. The simulated results show four high peaks at 5.6 GHz, 7.6 GHz, 10.98 GHz, and 11.29 GHz corresponding to absorption characteristics of 100%, 100%, 99%, and 99%, respectively. Furthermore, two different structures were designed and compared with the proposed MTMA. The proposed structure remained insensitive for any incident angle and polarization angle from 0° to 60°. Moreover, negative constitutive parameters were retrieved numerically. To support the simulated results, the proposed design was fabricated by using a computer numerical control-based printed circuit board prototyping machine and tested experimentally in a microwave laboratory. The absorption mechanism of the proposed MTMA is presented through the surface current and electric field distributions. The novelties of the proposed structure are a simple and new design, ease of fabrication, low cost, durability, suitability for real-time applications and long-term stability given the fabrication technique and non-destructive measurement method and very high absorption. The proposed structure has potential applications in C and X band frequency ranges.
Keywords:  multi-band      metamaterials      absorber      polarization-independent      negative parameters  
Received:  12 May 2021      Revised:  14 September 2021      Accepted manuscript online: 
PACS:  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
Corresponding Authors:  Yadgar I.Abdulkarim,E-mail:Yadgar.abdulkarim@charmouniversity.org     E-mail:  Yadgar.abdulkarim@charmouniversity.org
About author:  2021-9-29

Cite this article: 

Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications 2022 Chin. Phys. B 31 058401

[1] Altıntaş O, Aksoy M, Ünal E, Karaaslan M and Sabah C 2020 Journal of the Electrochemical Society 167 147512
[2] Abdulkarim Y I, Deng L, Luo H, Huang S, Karaaslan M, Altıntaş O and Al-badri K S L 2020 Journal of Materials Research and Technology 9 10291
[3] Bakıra M, Karaaslanb M, Unalb E, Akgolb O and Sabah C 2017 Opto-Electronics Review 25 318
[4] Altıntaş O, Aksoy M and Ünal E 2020 Physica E 116 113734
[5] Alkurt F O, Altintas O, Bakir M, Tamer A, Karadag F, Bagmanci M and Akgol O 2018 Materials Science 24 253
[6] Alkurt F O, Altintas O, Ozakturk M, Karaaslan M, Akgol O, Unal E and Sabah C 2020 Phys. Lett. A 384 126041
[7] Duan X, Chen X, Zhou Y, Zhou L and Hao S 2018 IEEE Antennas and Wireless Propagation Letters 17 1617
[8] Aziz C H and Al-Hindawi A M 2016 Journal of Modeling and Simulation of Antennas and Propagation 2 13
[9] Singh A K, Abegaonkar M P and Koul S K 2017 IEEE Antennas and Wireless Propagation Letters 16 2388
[10] Farahani M, Pourahmadazar J, Akbari M, Nedil M, Sebak A R and Denidni T A 2017 IEEE Antennas and Wireless Propagation Letters 16 2324
[11] Fang Z, Li J and Wang X 2020 Computers & Mathematics with Applications 79 1165
[12] Manjappa M, Pitchappa P, Wang N, Lee C and Singh R 2018 Advanced Optical Materials 6 1800141
[13] Zhang F, Li C, Fan Y, Yang R, Shen N H, Fu Q and Soukoulis C M 2019 Advanced Materials 31 1903206
[14] Roosta Z, Keshavarz A and Honarasa G 2018 Optik 174 648
[15] Chen H, Chan C T and Sheng P 2010 Nat. Mater. 9 387
[16] Rosenblatt G and Orenstein M 2015 Phys. Rev. Lett. 115 195504
[17] Alkurt F Ö, Altıntaş O, Bakır M, Karaaslan M, ünal E, Karadag F and Sabah C 2020 Optical Engineering 59 087104
[18] Bilal R M H, Baqir M A, Choudhury P K, Karaaslan M, Ali M M, Altłntas O and Sabah C 2021 IEEE Access 9 5670
[19] Abdulkarim Y I, Deng L, Luo H, Huang S, He L, Yuhan L and Karaaslan M 2020 Bull Mater. Sci. 43 116
[20] Han X, Zhang Z and Qu X 2021 Journal of Engineering 27 1
[21] Mahmud S, Islam S S, Mat K, Chowdhury M E, Rmili H and Islam M T 2020 Results in Physics 18 103259
[22] Zamzam P, Rezaei P and Khatami S A 2021 Physica E 128 114621
[23] Yueyi Y, Kuang Z, Kuang Z, Xumin D, Badreddine R, Shah N B and Qun W 2019 Photonics Research 7 80
[24] Yadgar I, Abdulkarim A, Fatih O, Alkurt C, Halgurd N, Awl D, Fahmi F, Muhammadsharif E, Mehmet B, Sekip D G, Muharrem K C and Heng L B 2021 Result in Physics 26 104644
[25] Saeid Jamilan, Mohammad N A and Davoud Z 2014 Progress In Electromagnetics Research C 47 95
[26] Majid A, Farzad T, Negin S, Justin L and Mehran A 2020 Scientific Reports 10 13638
[27] Thi H N, Son T B, Trong T N, Thanh T N, YoungPak L, Manh A N and Dinh L V 2014 Advances Natural Science: Nanoscience Nanotechnology 5 025013
[28] Sreenath R T, Naveen M and Raghvendra K C 2017 AEU-International Journal of Electronics and Communications 82 508
[29] Ben M, Shaobin L, Borui B, Xiangkun K, Haifeng Z, Zhiwen M and Beiyin W 2014 Journal of Electromagnetic Waves and Aplications 2 1
[30] Yueyi Y, Kuang Z, Badreddine R, Qinghua S, Xumin D, Qun W, Shah N B and Patrice G 2020 Nat. Commun. 11 4186
[31] Kuang Z, Yueyi Y, Xumin D, Haoyu L, Badreddine R, Qun W, Jian Shah Nawaz B, Jiubin T 2021 Laser & Photonics Reviews Applications 1 2000351
[32] Hema O A and Al-Hindawi A M 2021 Journal of Engineering 27 1
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[6] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[7] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[10] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[11] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[12] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[13] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[14] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[15] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
No Suggested Reading articles found!