Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048705    DOI: 10.1088/1674-1056/ac1b93
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Deep learning facilitated whole live cell fast super-resolution imaging

Yun-Qing Tang(唐云青)1,†,‡, Cai-Wei Zhou(周才微)2,3,†, Hui-Wen Hao(蒿慧文)3,4,5,†, and Yu-Jie Sun(孙育杰)3,4,5,§
1 Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
2 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
3 State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center(BIOPIC), Beijing 100871, China;
4 School of Life Sciences, Peking University, Beijing 100871, China;
5 School of Future Technology, Peking University, Beijing 100871, China
Abstract  A fully convolutional encoder-decoder network (FCEDN), a deep learning model, was developed and applied to image scanning microscopy (ISM). Super-resolution imaging was achieved with a 78 μm×78 μm field of view and 12.5 Hz-40 Hz imaging frequency. Mono and dual-color continuous super-resolution images of microtubules and cargo in cells were obtained by ISM. The signal-to-noise ratio of the obtained images was improved from 3.94 to 22.81 and the positioning accuracy of cargoes was enhanced by FCEDN from 15.83±2.79 nm to 2.83±0.83 nm. As a general image enhancement method, FCEDN can be applied to various types of microscopy systems. Application with conventional spinning disk confocal microscopy was demonstrated and significantly improved images were obtained.
Keywords:  optical microscopy      imaging and optical processing      image processing  
Received:  11 July 2021      Revised:  04 August 2021      Accepted manuscript online:  07 August 2021
PACS:  87.64.M- (Optical microscopy)  
  42.30.-d (Imaging and optical processing)  
  95.75.Mn (Image processing (including source extraction))  
Fund: Project supported by the China Postdoctoral Science Foundation, the National Key Research and Development Program of China for Y.S. (Grant No. 2017YFA0505300), and the National Science Foundation of China for Y.S. (Grant No. 21825401). The authors thank the Olympus engineer Mrs Shaoling Qi for assistance with the microscopy, Professor Wei Guo (University of Pennsylvania) for providing the human retinal pigment epithelium cells and Professor Xiaowei Chen (School of Future Technology, Peking University) for providing the Media-Golgi marker. Thanks to the High-performance Computing Platform of Peking University for providing computing resources and platforms.
Corresponding Authors:  Yun-Qing Tang, Yu-Jie Sun     E-mail:  tang@ucas.ac.cn;sun_yujie@pku.edu.cn

Cite this article: 

Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰) Deep learning facilitated whole live cell fast super-resolution imaging 2022 Chin. Phys. B 31 048705

[1] Valli J, Garcia-Burgos A, Rooney L M, e Oliveira B V D M, Duncan R R and Rickman C 2021 J. Biol. Chem. 297 100791
[2] Hell S W and Wichmann J 1994 Opt. Lett. 19 780
[3] Klar T A, Jakobs S, Dyba M, Egner A and Hell S W 2000 Proc. Natl. Acad. Sci. USA 97 8206
[4] Schneider J, Zahn J, Maglione M, Sigrist S J, Marquard J, Chojnacki J, Kräusslich H, Sahl S J, Engelhardt J and Hell S W 2015 Nat. Methods 12 827
[5] Danzl J G, Sidenstein S C, Gregor C, Urban N T, Ilgen P, Jakobs S and Hell S W 2016 Nat. Photonics 10 122
[6] Göttferta F, Pleiner T, Heine J, Westphal V, Görlich D, Sahl S J and Hell S W 2017 Proc. Natl. Acad. Sci. USA 114 2125
[7] Heine J, Reuss M, Harke B, D'Este E, Sahl S J and Hell S W 2017 Proc. Natl. Acad. Sci. USA 114 9797
[8] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F 2006 Science 313 1642
[9] Hess S T, Girirajan T P K and Mason M D 2006 Biophys. J. 91 4258
[10] Rust M J, Bates M and Zhuang X 2006 Nat. Methods 3 793
[11] Schüttpelz M, Wolter S, van de Linde S, Heilemann M and Sauer M 2010 Proc. SPIE 7571 75710V
[12] Gustafsson M G L 2000 J. Microsc. 198 82
[13] Gustafsson M G L, Shao L, Carlton P M, Wang C J R, Golubovskaya I N, Cande W Z, Agard D A and Sedat J W 2008 Biophys. J. 94 4957
[14] Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P, Tang L, Zhang Y, Liu Y, Tan S and Chen L Y 2018 Nat. Biotech. 36 451
[15] Jost A and Heintzmann R 2013 Annu. Rev. Mater. Res. 43 261
[16] Heilemann M 2010 J. Biotechnol. 149 243
[17] Sheppard C J R 1988 Optik 80 53
[18] Mueller C B and Enderlein J 2009 Phys. Rev. Lett. 104 198101
[19] Huff J 2015 Nat. Methods 12 i
[20] Huff J, Bergter A Birkenbeil J Kleppe I Engelmann R and Krzic U 2017 Nat. Methods 14 1223
[21] De Luca G M R, Breedijk R M P, Brandt R A J, Zeelenberg C H C, Jong B E D, Timmermans W, Azar L N, Hoebe R A, Stallinga S and Manders E M M 2013 Biomed. Opt. Express 4 2644
[22] De Luca G M R, Breedijk R, Hoebe R, Stallinga S and Manders E 2017 Methods Appl. Fluores. 5 015002
[23] De luca G M R, Desclos E, Breedijk R M P, Dolz-edo L, Smits G J, Nahidiazar L, Bielefeld P, Picavet L, Fitzsimons C P, Hoebe R and Manders E M M 2017 J. Microsc. 266 166
[24] Sheppard C J R, Castello M, Tortarolo G, Deguchi T, Koho S V, Vicidomini G and Diaspro A 2020 J. Opt. Soc. Am. A 37 154
[25] DuBose T B, LaRocca F, Farsiu S and Izatt J A 2019 Nat. Photonics 13 257
[26] Roth S, Sheppard C J R, Wicker K and Heintzmann R 2013 Opt. Nanoscopy 2 1
[27] York A G, Chandris P, Nogare D D, Head J, Wawrzusin P, Fischer R S, Chitnis A and Shroff H 2013 Nat. Methods 10 1122
[28] Curd A, Cleasby A, Makowska K, York A, Shroff H and Peckham M 2015 Methods 88 37
[29] Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Grobhans J, Bunt G and Enderlein J 2015 Proc. Natl. Acad. Sci. USA 110 21000
[30] Hayashi S 2016 Jpn. J. Appl. Phys. 55 082501
[31] Hayashi S and Okada Y 2015 Mol. Biol. Cell 26 1743
[32] Azuma T and Kei T 2015 Opt. Express 23 15003
[33] Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S, Rocha-Martins M, Segovia-Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J, Tomancak P, Royer L, Jug F and Myers E W 2018 Nat. Methods 15 1090
[34] Wang H, Rivenson Y, Jin Y, Wei Z, Gao R, Günaydın H, Bentolila L A, Kural C and Ozcan A 2019 Nat. Methods 16 103
[35] Ouyang W, Aristov A, Lelek M, Hao X and Zimmer C 2018 Nat. Biotech 36 460
[36] Nehme E, Weiss L E, Michaeli T and Shechtman Y 2018 Optica 5 458
[37] Wu Y, Rivenson Y, Wang H, Luo Y, Ben-David E, Bentolila, L, Pritz C and Ozcan A 2019 Nat. Methods 16 1323
[38] Bai C, Yu X, Peng T, Liu C, Min J, Dan D and Yao B 2020 IEEE Photon. Technol. Lett. 32 1131
[39] Wang Z, Zhu L, Zhang H, Li G, Yi C, Li Y, Yang Y, Ding Y, Zhen M, Gao S, Hsiai T and Fei P 2021 Nat. Methods 18 551
[40] Loffe S and Szegedy C 2015 Proceedings of the 32nd International Conference on International Conference on Machine Learning, July 7-9, 2015, Lille, France, p. 448
[41] Zhao H, Gallo O, Frosio I and Kautz J 2016 IEEE Trans. Comput. IMAGING 3 47
[42] Kingma D and Ba J 2014 arXiv:1412.6980
[43] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S G, Murray D, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y and Zheng X 2016 Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, November 2-4,2016, Savannah, USA, p. 256
[44] Qiao C, Li D, Guo Y, Liu C, Jiang T, Dai Q H and Li D 2021 Nat. Methods 18 194
[45] Bialkowski S E 1996 Crit. Rev. Anal. Chem. 26 101
[46] Otsu N 1979 IEEE Trans. Sys. Man. Cyber. 9 62
[47] Hao H, Niu J, Xue B, Su Q P, Liu M, Yang J, Qin J, Zhao S, Wu C and Sun Y 2020 EMBO Rep. 21 e48385
[48] Belthangady C and Royer L A 2019 Nat. Methods 16 1215
[49] Cascarano P, Piccolomini E L, Morotti E and Sebastiani A 2021 arXiv:2102.07510
[50] Ruhnow F, Zwicker D and Diez S 2011 Biophys. J. 100 2820
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[3] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[4] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[5] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
[6] Optical polarization response at gold nanosheet edges probed by scanning near-field optical microscopy
Zhuan-Fang Bi(毕篆芳), Mu Yang(杨沐), Guang-Yi Shang(商广义). Chin. Phys. B, 2018, 27(8): 087801.
[7] Passive ranging and a three-dimensional imaging system through wavefront coding
Xing-Xu Zhang(张星煦), Lei Qiao(乔磊), Ting-Yu Zhao(赵廷玉), Rong-Sheng Qiu(仇荣生). Chin. Phys. B, 2018, 27(5): 054205.
[8] Applications of nanostructures in wide-field, label-free super resolution microscopy
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青). Chin. Phys. B, 2018, 27(11): 118704.
[9] New method for fast morphological characterization of organic polycrystalline films by polarized optical microscopy
He Xiao-Chuan (何小川), Yang Jian-Bing (杨建兵), Yan Dong-Hang (闫东航), Weng Yu-Xiang (翁羽翔). Chin. Phys. B, 2015, 24(7): 076803.
[10] A novel method of rapidly modeling optical properties of actual photonic crystal fibres
Wang Li-Wen(王立文), Lou Shu-Qin(娄淑琴), Chen Wei-Guo(陈卫国), and Li Hong-Lei(李宏雷). Chin. Phys. B, 2010, 19(8): 084209.
[11] Study of superstructure II in multiferroic BiMnO3
Ge Bing-Hui(葛炳辉), Li Fang-Hua(李方华), Li Xue-Ming(李雪明), Wang Yu-Mei (王玉梅), Chi Zhen-Hua (迟振华), and Jin Chang-Qing (靳常青). Chin. Phys. B, 2008, 17(9): 3163-3169.
[12] Influence of the probe--sample interaction on scanning near-field optical microscopic images in the far field
Li Zhi(李智), Zhang Jia-Sen(张家森), Yang Jing(杨景), and Gong Qi-Huang(龚旗煌). Chin. Phys. B, 2006, 15(11): 2558-2563.
No Suggested Reading articles found!