Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬),† and Jianchun Cheng(程建春)‡
Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract Acoustic orbital angular momentum (OAM) associated with helicoidal wavefront recently attracts rapidly-growing attentions, offering a new degree of freedom for acoustic manipulation. Due to the unique dynamical behavior and inherent mode orthogonality of acoustic OAM, its harnessing is of fundamental interests for wave physics, with great potential in a plethora of applications. The recent advance in materials physics further boosts efforts into controlling OAM-carrying acoustic vortices, especially acoustic metasurfaces with planar profile and subwavelength thickness. Thanks to their unconventional acoustic properties beyond attainable in the nature, acoustic artificial structures provide a powerful platform for new research paradigm for efficient generation and diverse manipulation of OAM in ways not possible before, enabling novel applications in diverse scenarios ranging from underwater communication to object manipulation. In this article, we present a comprehensive view of this emerging field by delineating the fundamental physics of OAM-metasurface interaction and recent advances in the generation, manipulation, and application of acoustic OAM based on artificial structures, followed by an outlook for promising future directions and potential practical applications.
(Ultrasonics, quantum acoustics, and physical effects of sound)
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006 and 81127901), the Fund from the HighPerformance Computing Center of Collaborative Innovation Center of Advanced Microstructures, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:
Bin Liang, Jianchun Cheng
E-mail: liangbin@nju.edu.cn;jccheng@nju.edu.cn
Cite this article:
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春) Controlling acoustic orbital angular momentum with artificial structures: From physics to application 2022 Chin. Phys. B 31 094302
[1] Zhang L K and Marston P L 2011 Phys. Rev. E84 065601 [2] Mitri F G, Lobo T P and Silva G T 2012 Phys. Rev. E85 026602 [3] Anhäuser A, Wunenburger R and Brasselet E 2012 Phys. Rev. Lett.109 034301 [4] Hefner B T and Marston P L 1999 J. Acoust. Soc. Am.106 3313 [5] Hong Z Y, Zhang J and Drinkwater B W 2015 Phys. Rev. Lett.114 214301 [6] Demore C E M, Yang Z Y, Volovick A, Cochran S, MacDonald M P and Spalding G C 2012 Phys. Rev. Lett.108 194301 [7] Shi C Z, Dubois M, Wang Y and Zhang X 2017 Proc. Natl. Acad. Sci. USA114 7250 [8] Marston T M and Marston P L 2010 J. Acoust. Soc. Am.127 1856 [9] Bollen V and Marston P L 2020 J. Acoust. Soc. Am.148 1784 [10] Baudoin M and Thomas J L 2020 Annu. Rev. Fluid Mech.52 205 [11] Nye J F and Berry M V 1974 Proc. R. Soc. Lond. A336 165 [12] Grinenko A, Wilcox P D, Courtney C R P and Drinkwater B W 2012 Proc. R. Soc. A468 3571 [13] Yang M, Ma G C, Wu Y, Yang Z Y and Sheng P 2014 Phys. Rev. B89 064309 [14] Yang Z, Mei J, Yang M, Chan N H and Sheng P 2008 Phys. Rev. Lett.101 204301 [15] Liang Z X and Li J S 2012 Phys. Rev. Lett.108 114301 [16] Li J and Chan C T 2004 Phys. Rev. E70 055602 [17] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater.5 452 [18] Gulia P and Gupta A 2019 Appl. Acoust.156 113 [19] Qi S B, Li Y and Assouar B 2017 Phys. Rev. Appl.7 054006 [20] Xie Y B, Wang W Q, Chen H Y, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun.5 5553 [21] Ma G C, Yang M, Xiao S W, Yang Z Y and Sheng P 2014 Nat. Mater.13 873 [22] Li Y, Jiang X, Liang B, Cheng J C and Zhang L K 2015 Phys. Rev. Appl.4 024003 [23] Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A and Jing Y 2017 Phys. Rev. Lett.119 035501 [24] Zhu Y F, Hu J, Fan X D, Yang J, Liang B, Zhu X F and Cheng J C 2018 Nat. Commun.9 1632 [25] Weng J K, Ding Y J, Hu C B, Zhu X F, Liang B, Yang J and Cheng J C 2020 Nat. Commun.11 6309 [26] Marston P L 2008 J. Acoust. Soc. Am.124 2905 [27] Wang W, Tan Y, Liang B, Ma G C, Wang S B and Cheng J C 2021 Phys. Rev. B104 174301 [28] Assouar B, Liang B, Wu Y, Li Y, Cheng J C and Jing Y 2018 Nat. Rev. Mater.3 460 [29] Jiang X, Li Y, Liang B, Cheng J C and Zhang L 2016 Phys. Rev. Lett.117 034301 [30] Fedoseyev V G 2008 J. Phys. A:Math. Theor.41 505202 [31] Marchiano R and Thomas J L 2005 Phys. Rev. E71 066616 [32] Yang L, Ma Q Y, Tu J and Zhang D 2013 J. Appl. Phys.113 154904 [33] Volke-Sepulveda K, Santillan A O and Boullosa R R 2008 Phys. Rev. Lett.100 024302 [34] Gspan S, Meyer A, Bernet S and Ritsch-Marte M 2004 J. Acoust. Soc. Am.115 1142 [35] Ealo J L, Prieto J C and Seco F 2011 IEEE T. Ultrason. Ferr.58 1651 [36] Jiang X, Zhao J J, Liu S L, Liang B, Zou X Y, Yang J, Qiu C W and Cheng J C 2016 Appl. Phys. Lett.108 203501 [37] Jimenez N, Pico R, Sanchez-Morcillo V, Romero-Garcia V, Garcia-Raffi L M and Staliunas K 2016 Phys. Rev. E94 053004 [38] Jimenez N, Romero-Garcia V, Garcia-Raffi L M, Camarena F and Staliunas K 2018 Appl. Phys. Lett.112 204101 [39] Jia Y R, Wei Q, Wu D J, Xu Z and Liu X J 2018 Appl. Phys. Lett.112 173501 [40] Cao J M, Yang K X, Fang X S, Guo L, Li Y and Cheng Q 2021 Appl. Phys. Lett.119 143501 [41] Muelas-Hurtado R D, Ealo J L, Pazos-Ospina J F and Volke-Sepulveda K 2018 Appl. Phys. Lett.112 084101 [42] Ye L P, Qiu C Y, Lu J Y, Tang K, Jia H, Ke M Z, Peng S S and Liu Z Y 2016 AIP Adv.6 085007 [43] Esfahlani H, Lissek H and Mosig J R 2017 Phys. Rev. B95 024312 [44] Jia Y R, Ji W Q, Wu D J and Liu X J 2018 Appl. Phys. Lett.113 173502 [45] Zhang Y, Xie B Y, Liu W W, Cheng H, Chen S Q and Tian J G 2019 Appl. Phys. Lett.114 091905 [46] Guo Z Y, Liu H J, Zhou H, Zhou K Y, Wang S M, Shen F, Gong Y B, Gao J, Liu S T and Guo K 2019 Phys. Rev. E100 053315 [47] Fan S W, Wang Y F, Cao L Y, Zhu Y F, Chen A L, Vincent B, Assouar B and Wang Y S 2020 Appl. Phys. Lett.116 163504 [48] Wang Y, Qian J, Xia J P, Ge Y, Yuan S Q, Sun H X and Liu X J 2021 Micromachines12 1388 [49] Hou Z L, Ding H, Wang N Y, Fang X S and Li Y 2021 Phys. Rev. Appl.16 014002 [50] Fu Y Y, Tian Y, Li X, Yang S L, Liu Y W, Xu Y D and Lu M H 2022 Phys. Rev. Lett.128 104501 [51] Mitri F G 2006 New J. Phys.8 138 [52] Naify C J, Rohde C A, Martin T P, Nicholas M, Guild M D and Orris G J 2016 Appl. Phys. Lett.108 223503 [53] Courtney C R P, Demore C E M, Wu H, Grinenko A, Wilcox P D, Cochran S and Drinkwater B W 2014 Appl. Phys. Lett.104 154103 [54] Courtney C R P, Drinkwater B W, Demore C E M, Cochran S, Grinenko A and Wilcox P D 2013 Appl. Phys. Lett.102 123508 [55] Liu J J, Liang B, Yang J, Yang J and Cheng J C 2020 Sci. Rep-Uk.10 3827 [56] Liu J J, Liang B and Cheng J C 2021 Phys. Rev. Appl.15 014015 [57] Li J F, Diaz-Rubio A, Shen C, Jia Z T, Tretyakov S and Cummer S 2019 Phys. Rev. Appl.11 024016 [58] Chen H Z, Liu T, Luan H Y, Liu R J, Wang X Y, Zhu X F, Li Y B, Gu Z M, Liang S J, Gao H, Lu L, Ge L, Zhang S, Zhu J and Ma R M 2020 Nat. Phys.16 571 [59] Liu T, An S W, Gu Z M, Liang S J, Gao H, Ma G C and Zhu J 2022 Sci. Bull.67 1131 [60] Liu J J, Li Z W, Ding Y J, Chen A, Liang B, Yang J, Cheng J C and Christensen J 2022 Adv. Mater.34 2201575 [61] Jimenez-Gambin S, Jimenez N and Camarena F 2020 Phys. Rev. Appl.14 054070 [62] Baudoin M, Gerbedoen J C, Riaud A, Matar O B, Smagin N and Thomas J L 2019 Sci. Adv.5 eaav1967 [63] Jiang X, Ta D A and Wang W Q 2020 Phys. Rev. Appl.14 034014 [64] Fu Y Y, Shen C, Zhu X H, Li J F, Liu Y W, Cummer S A and Xu Y D 2020 Sci. Adv.6 eaba9876 [65] Liu F M, Li W P, Pu Z H and Ke M Z 2019 Appl. Phys. Lett.114 193501 [66] Jiang X, Wang N Y, Zhang C X, Fang X S, Li S Q, Sun X Y, Li Y, Ta D and Wang W Q 2021 Appl. Phys. Lett.118 071901 [67] Jiang X, Shi C Z, Wang Y, Smalley J, Cheng J C and Zhang X 2020 Phys. Rev. Appl.13 014014 [68] Liu J J, Ding Y J, Wu K, Liang B and Cheng J C 2021 Appl. Phys. Lett.119 213502 [69] Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J and Huang T J 2018 Nat. Methods15 1021 [70] Li Y, Guo G, Tu J, Ma Q, Guo X, Zhang D and Sapozhnikov O A 2018 Appl. Phys. Lett.112 254101 [71] Wang T, Ke M Z, Li W P, Yang Q, Qiu C Y and Liu Z Y 2016 Appl. Phys. Lett.109 123506 [72] Li W P, Ke M Z, Peng S S, Liu F M, Qiu C Y and Liu Z Y 2018 Appl. Phys. Lett.113 051902 [73] Li J F, Crivoi A, Peng X Y, Shen L, Pu Y J, Fan Z and Cummer S A 2021 Commun. Phys.4 113 [74] Jiang X, Liang B, Cheng J C and Qiu C W 2018 Adv. Mater.30 e1800257 [75] Sun Z Y, Shi Y, Sun X C, Jia H, Jin Z K, Deng K and Yang J 2021 J. Phys. D:Appl. Phys.54 205303 [76] Wu K, Liu J J, Ding Y J, Wang W, Liang B and Cheng J C 2022 Nat. Commun. (accepted) [77] Chen R, Zhou H, Moretti M, Wang X D and Li J D 2020 IEEE Commun. Surv. Tutor.22 840
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.