Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034303    DOI: 10.1088/1674-1056/ac1e14
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device

Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春)
Key Laboratory of Modern Acoustics(Ministry of Education), Institute of Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  In the past decade, one-way manipulation of sound has attracted rapidly growing attention with application potentials in a plethora of scenarios ranging from ultrasound imaging to noise control. Here we propose a design of a planar device capable of unidirectionally harnessing the transmitted wavefront for broadband airborne sound. Our mechanism is to use the broken spatial symmetry to give rise to different critical angles for plane waves incident along opposite directions. Along the positive direction, the incoming sound is allowed to pass with high efficiency and be arbitrarily molded into the desired shape while any reversed wave undergoes a total reflection. We analytically derive the working bandwidth and incident angle range, and present a practical implementation of our strategy. The performance of our proposed device is demonstrated both theoretically and numerically via distinct examples of production of broadband anomalous refraction, acoustic focusing and non-diffractive beams for forward transmitted wave while virtually blocking the reversed waves. Bearing advantages of simple design, planar profile, broad bandwidth and high efficiency, our design opens the possibility for novel one-way acoustic device and may have important impact on diverse applications in need of special control of airborne sound.
Keywords:  acoustic metamaterials      one-way wavefront manipulation      broadband planar device  
Received:  28 May 2021      Revised:  01 July 2021      Accepted manuscript online:  17 August 2021
PACS:  43.90.+v (Other topics in acoustics)  
Fund: Project supported by National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006, 11374157, and 81127901), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Innovation Special Zone of National Defense Science and Technology and High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures.
Corresponding Authors:  Bin Liang     E-mail:  liangbin@nju.edu.cn

Cite this article: 

Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春) High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device 2022 Chin. Phys. B 31 034303

[1] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[2] Li B and Wang L 2008 Phys. World 21 27
[3] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[4] Kobayashi W, Teraoka Y and Terasaki I 2009 Appl. Phys. Lett. 95 171905
[5] Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[6] Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nat. Mater. 9 989
[7] Yuan B, Liang B, Tao J C, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 043503
[8] Wang X P, Wan L L, Chen T N, Liang Q X and Song A L 2016 Appl. Phys. Lett. 109 044102
[9] Zhu Y F, Zou X Y, Liang B and Cheng J C 2015 Appl. Phys. Lett. 107 113501
[10] Zhu Y F, Zou X Y, Liang B and Cheng J C 2015 Appl. Phys. Lett. 106 173508
[11] Li Y, Liang B, Gu Z M, Zou X Y and Cheng J C 2013 Appl. Phys. Lett. 103 053505
[12] Song A L, Chen T N, Wang X P and Xi Y H 2017 Phys. Lett. A 381 29
[13] Li X F, Ni X J, Feng L, Lu M H, He C and Chen Y F 2011 Phys. Rev. Lett. 106 084301
[14] Song A L, Chen T N, Wang X P and Wan L L 2016 J. Appl. Phys. 120 085106
[15] Zhang S, Zhang Y, Guo Y J, Leng Y H, Feng W and Cao W W 2016 Phys. Rev. Appl. 5 034006
[16] Shen C, Xie Y B, Li J F, Cummer S A and Jing Y 2016 Appl. Phys. Lett. 108 223502
[17] Li Y, Shen C, Xie Y B, Li J F, Wang W Q, Cummer S A and Jing Y 2017 Phys. Rev. Lett. 119 035501
[18] Cao L Y, Xu Y L, Assouar B and Yang Z C 2018 Appl. Phys. Lett. 113 183506
[19] Hu J 2020 Appl. Phys. Express 13 066501
[20] Jiang X, Liang B, Zou X Y, Yang J, Yin L L, Yang J and Cheng J C 2016 Sci. Rep. 6 28023
[21] Zhu X F, Zou X Y, Liang B and Cheng J C 2010 J. Appl. Phys. 108 124909
[22] Li Y, Tu J, Liang B, Guo X S, Zhang D and Cheng J C 2012 J. Appl. Phys. 112 064504
[23] Li R Q, Liang B, Li Y, Kan W W, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 263502
[24] Zhu X F, Ramezani H, Shi C Z, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042
[25] Liu T, Zhu X F, Chen F, Liang S J and Zhu J 2018 Phys. Rev. Lett. 120 124502
[26] Shen Y X, Peng Y G, Zhao D G, Chen X C, Zhu J and Zhu X F 2019 Phys. Rev. Lett. 122 094501
[27] Geng Z G, Zeng L S, Shen Y X, Peng Y G and Zhu X F 2021 J. Appl. Phys. 129 074504
[28] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[29] Mei J and Wu Y 2014 New J. Phys. 16 123007
[30] Kan W W, Liang B, Zhu X F, Zou X Y, Yang J and Cheng J C 2013 J. Appl. Phys. 114 134508
[31] Xie Y, Wang W, Chen H, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun. 5 5553
[1] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[2] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[3] Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials
Li Li (李黎), Wen Ji-Hong (温激鸿), Cai Li (蔡力), Zhao Hong-Gang (赵宏刚), Wen Xi-Sen (温熙森). Chin. Phys. B, 2013, 22(1): 014301.
No Suggested Reading articles found!