Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018808    DOI: 10.1088/1674-1056/27/1/018808
Special Issue: TOPICAL REVIEW — New generation solar cells
TOPICAL REVIEW—New generation solar cells Prev   Next  

Recent progress of colloidal quantum dot based solar cells

Huiyun Wei(卫会云)1, Dongmei Li(李冬梅)2,3, Xinhe Zheng(郑新和)1, Qingbo Meng(孟庆波)2,3
1 School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China;
2 Key Laboratory for Renewable Energy(CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and PbX (X=S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) exceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QDSCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given.

Keywords:  colloidal quantum dot solar cells      quantum-dot sensitized solar cells      PbX quantum dot solar cells      interfacial passivation  
Received:  20 October 2017      Revised:  14 November 2017      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61274134, 91433205, 51372270, 51402348, 51421002, 21173260, 11474333, 51372272, and 51627803), the Knowledge Innovation Program of the Chinese Academy of Sciences, the Natural Science Foundation of Beijing, China (Grant No. 4173077), USTB Talent Program, China (Grant No. 06500053), and Fundamental Research Funds for the Central Universities, China (Grant Nos. FRF-BR-16-018A, FRF-TP-17-069A1, and 06198178).

Corresponding Authors:  Dongmei Li, Dongmei Li     E-mail:  dmli@iphy.ac.cn;xinhezheng@ustb.edu.cn

Cite this article: 

Huiyun Wei(卫会云), Dongmei Li(李冬梅), Xinhe Zheng(郑新和), Qingbo Meng(孟庆波) Recent progress of colloidal quantum dot based solar cells 2018 Chin. Phys. B 27 018808

[1] Burst J M, Duenow J N, Albin D S, Colegrove E, Reese M O, Aguiar J A, Jiang C S, Patel M K, Al-Jassim M M, Kuciauskas D, Swain S, Ablekim T, Lynn K G and Metzger W K 2016 Nat. Energ. 1 16055
[2] Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S and Tiwari A N 2013 Nat. Mater. 12 1107
[3] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energ. 2 17032
[4] Park N G, Gratzel M, Miyasaka T and Emery K 2016 Nature Energ. 1 8
[5] Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D and Ding L M 2016 Adv. Sci. 3 1500324
[6] Gong J, Sumathy K, Qiao Q and Zhou Z 2017 Renew. Sust. Energ. Rev. 68 13
[7] Hagfeldt A, Boschloo G, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 9
[8] Dai S X, Zhao F W, Zhang Q Q, Lau T K, Li T F, Liu K, Ling Q D, Wang C R, Lu X H, You W and Zhan X W 2017 J. Am. Chem. Soc. 139 1336
[9] Jiao S, Du J, Du Z L, Long D H, Jiang W Y, Pan Z X, Li Y and Zhong X H 2017 J. Phys. Chem. Lett. 8 559
[10] Kagan C R, Lifshitz E, Sargent E H and Talapin D V 2016 Science 353 aac5523
[11] hi J, Huang Q, Wan Q and Xu X 2016 Acta Phys.-Chim. Sin. 32 822
[12] Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
[13] Lei Y, Jia H, He W, Zhang Y, Mi L, Hou H, Zhu G and Zheng Z 2012 J. Am. Chem. Soc. 134 17392
[14] Beard M C, Luther J M, Semonin O E and Nozik A J 2013 Accounts Chem. Res. 46 1252
[15] Semonin O E, Luther J M, Choi S, Chen H Y, Gao J B, Nozik A J and Beard M C 2011 Science 334 1530
[16] Shabaev A, Hellberg C S and Efros A L 2013 Accounts Chem. Res. 46 1242
[17] Zhang J B, Gao J B, Church C P, Miller E M, Luther J M, Klimov V I and Beard M C 2014 Nano Lett. 14 6010
[18] Ji M, Park S, Connor S T, Mokari T, Cui Y and Gaffney K J 2009 Nano Lett. 9 1217
[19] Hanna M C, Beard M C and Nozik A J 2012 J. Phys. Chem. Lett. 3 2857
[20] https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[21] Yu J, Wang W R, Pan Z X, Du J, Ren Z W, Xue W N and Zhong X H 2017 J. Mater. Chem. A 5 14124
[22] Emin S, Singh S P, Han L Y, Satoh N and Islam A 2011 Sol. Energy 85 1264
[23] Sogabe T, Shen Q and Yamaguchi K 2016 J. Photon. Energy 6 040901
[24] Li W and Zhong X H 2015 J. Phys. Chem. Lett. 6 11
[25] Zhao K, Pan Z X and Zhong X H 2016 J. Phys. Chem. Lett. 7 406
[26] Kramer I J and Sargent E H 2014 Chem. Rev. 114 863
[27] Lan X, Masala S and Sargent E H 2014 Nat. Mater. 13 8
[28] Wei H Y, Wang G S, Wu H J, Luo Y H, Li D M and Meng Q B 2016 Acta Phys. Chim. Sin. 32 201
[29] Albero J, Clifford J N and Palomares E 2014 Coordin. Chem. Rev. 263-264 12
[30] Chuang C H and Lee Y L 2007 Appl. Phys. Lett. 91 053503
[31] Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Gratzel M and Nazeeruddin M K 2009 Nano Lett. 9 7
[32] Zhang Q X, Guo X Z, Huang X M, Huang S Q, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2012 Phys. Chem. Chem. Phys. 13 9
[33] Badawi A 2015 Chin. Phys. B 24 047205
[34] Zhang Q X, Chen G P, Yang Y Y, Shen X, Zhang Y D, Li C H, Yu R C, Luo Y H, Li D M and Meng Q B 2012 Phys. Chem. Chem. Phys. 14 6479
[35] Zhang Q X, Guo X Z, Huang X M, Huang S Q, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2011 Phys. Chem. Chem. Phys. 13 4659
[36] Tian J J, Lv L L, Fei C B, Wang Y, Liu X G and Cao G Z 2014 J. Mater. Chem. A 2 7
[37] Bai Y, Han C, Chen X Q, Yu H, Zong X, Li Z and Wang L Z 2015 Nano Energy 13 609
[38] Huang F, Zhang L S, Zhang Q F, Hou J, Wang H G, Wang H L, Peng S L, Liu J S and Cao G Z 2016 ACS Appl. Mater. Inter. 8 34482
[39] Jiao S, Wang J, Shen Q, Li Y and Zhong X H 2016 J. Mater. Chem. A 4 7214
[40] Koleilat G I, Levina L, Shukla H, Myrskog S H, Hinds S, Pattantyus-Abraham A G and Sargent E H 2008 ACS Nano 2 833
[41] Scholes G D and Rumbles G 2006 Nat. Mater. 5 920
[42] Schoolar R B and Dixon J R 1965 Phys. Rev. 137 4
[43] Lee J W, Son D Y, Ahn T K, Shin H W, Kim I Y, Hwang S J, Ko M J, Sul S, Han H and Park N G 2013 Sci. Rep. 3 1050
[44] Pan Z X, Zhao K, Wang J, Zhang H, Feng Y Y and Zhong X H 2013 ACS Nano 7 5215
[45] Kim S, Kang M, Kim S, Heo J H, Noh J H, Im S H, Seok S I and Kim S W 2013 ACS Nano 7 4756
[46] Pan Z X, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X H and Bisquert J 2014 J. Am. Chem. Soc. 136 9203
[47] Du J, Du Z L, Hu J S, Pan Z X, Shen Q, Sung J K, Long D H, Dong H, Sun L T, Zhong X H and Wan L J 2016 J. Am. Chem. Soc. 138 4201
[48] Bai B, Kou D X, Zhou W H, Zhou Z J and Wu S X 2015 Green Chem. 17 4377
[49] Li T L, Lee Y L and Teng H 2012 Energ. Environ. Sci. 5 5315
[50] McDaniel H, Fuke N, Makarov N S, Pietryga J M and Klimov V I 2013 Nature Commun. 4 2887
[51] McDaniel H, Fuke N, Pietryga J M and Klimov V I 2013 J. Phys. Chem. Lett. 245 355
[52] Zarei H and Malekfar R 2016 Chin. Phys. B 25 027103
[53] Lopez N, Reichertz L A, Yu K M, Campman K and Walukiewicz W 2011 Phys. Rev. Lett. 106 028701
[54] Okada Y, Ekins-Daukes N J, Kita T, Tamaki R, Yoshida M, Pusch A, Hess O, Phillips C C, Farrell D J, Yoshida K, Ahsan N, Shoji Y, Sogabe T and Guillemoles J F 2015 Appl. Phys. Rev. 2 021302
[55] Hu X, Zhang Q X, Huang X M, Li D M, Luo Y H and Meng Q B 2011 J. Mater. Chem. 21 15903
[56] Luo J H, Wei H Y, Huang Q L, Hu X, Zhao H F, Yu R C, Li D M, Luo Y H and Meng Q B 2013 Chem. Commun. 49 3881
[57] Luo J H, Wei H Y, Li F, Huang Q L, Li D M, Luo Y H and Meng Q B 2014 Chem. Commun. 50 3464
[58] Wei H Y, Wang G S, Luo Y H, Li D M and Meng Q B 2015 Electrochim. Acta 173 156
[59] Wei H Y, Wang G S, Shi J J, Wu H J, Luo Y H, Li D M and Meng Q B 2016 J. Mater. Chem. A 4 14194
[60] Jiao S, Shen Q, Mora-Sero I, Wang J, Pan Z X, Zhao K, Kuga Y, Zhong X H and Bisquert J 2015 ACS Nano 9 908
[61] Itzhakov S, Shen H, Buhbut S, Lin H and Oron D 2012 J. Phys. Chem. C 117 8
[62] Wang J and Han H 2010 J. Colloid Interf. Sci. 351 5
[63] Wu K, Liang G, Kong D, Chen J, Chen Z, Shan X, McBride J R and Lian T 2016 Chem. Sci. 7 7
[64] Wang J, Mora-Sero I, Pan Z X, Zhao K, Zhang H, Feng Y Y, Yang G, Zhong X H and Bisquert J 2013 J. Am. Chem. Soc. 135 15913
[65] Ahmed R, Zhao L, Mozer A J, Will G, Bell J and Wang H X 2015 J. Phys. Chem. C 119 2297
[66] Brennan T P, Trejo O, Roelofs K E, Xu J, Prinz F B and Bent S F 2013 J. Phys. Chem. A 1 7566
[67] Kim D H, Losego M D, Peng Q and Parsons G N 2016 Adv. Mater. Interf. 3 1600354
[68] Shen T, Tian J J, Li B and Cao G Z 2016 Sci. Chin. Mater. 59 833
[69] Ren Z W, Wang J, Pan Z X, Zhao K, Zhang H, Li Y, Zhao Y X, Mora-Sero I, Bisquert J and Zhong X H 2015 Chem. Mater. 27 8398
[70] Zhao K, Pan Z X, Mora-Sero I, Canovas E, Wang H, Song Y, Gong X Q, Wang J, Bonn M, Bisquert J and Zhong X H 2015 J. Am. Chem. Soc. 137 5602
[71] Jiang G, Pan Z, Ren Z, Du J, Yang C, Wang W and Zhong X 2016 J. Phys. Chem. A 29 6
[72] Du J, Meng X X, Zhao K, Li Y and Zhong X H 2015 J. Phys. Chem. A 3 17091
[73] Xia R, Wang S, Dong W and Fang X 2017 Acta Phys. -Chin. Sin. 33 670
[74] Deng M H, Huang S Q, Zhang Q X, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2010 Chem. Lett. 39 1168
[75] Yang Y, Zhu L, Sun H, Huang X M, Luo Y H, Li D M and Meng Q B 2012 ACS Appl. Mater.Inter. 4 7
[76] Zhang X L, Huang X M, Yang Y Y, Wang S, Gong Y, Luo Y H, Li D M and Meng Q B 2013 ACS Appl. Mater.Inter. 5 5954
[77] Xu J, Xiao J, Don J, Luo Y H, Li D M and Meng Q B 2014 Electrochim. Acta 127 6
[78] Kamaja C K, Devarapalli R R and Shelke M V 2017 ChemElectroChem 4 6
[79] Ghosh D, Halder G, Sahasrabudhe A and Bhattacharyya S 2016 Nanoscale 8 10632
[80] Zhang H, Yang C, Du Z L, Pan D Y and Zhong X H 2017 J. Mater. Chem. A 5 1614
[81] Pan Z X, Zhang H, Cheng K, Hou Y M, Hua J L and Zhong X H 2012 ACS Nano 6 3982
[82] Yang J W, Wang J, Zhao K, Izuishi T, Li Y, Shen Q and Zhong X H 2015 J.Phys. Chem. C 119 28800
[83] Wang G S, Wei H Y, Luo Y H, Wu H J, Li D M, Zhong X H and Meng Q B 2016 J. Power Sources 302 266
[84] Wang G S, Wei H Y, Shi J J, Xu Y Z, Wu H J, Luo Y H, Li D M and Meng Q B 2017 Nano Energy 35 17
[85] Wang J, Li Y, Shen Q, Izuishi T, Pan Z X, Zhao K and Zhong X H 2016 J. Mater. Chem. A 4 877
[86] Yang J W and Zhong X H 2016 J. Mater. Chem. A 4 16553
[87] Peng W X, Du J, Pan Z X, Nakazawa N, Sun J K, Du Z L, Shen G C, Yu J, Hu J S, Shen Q and Zhong X H 2017 ACS Appl. Mater. Inter. 9 5328
[88] Sambur J B, Novet T and Parkinson B A 2010 Science 330 4
[89] Cheng Y, Arinze E S, Palmquist N and Thon S M 2016 Nanophotonics 5 31
[90] Hines M A and Scholes G D 2003 Adv Mater 15 1844
[91] Ma W, Swisher S L, Ewers T, Engel J, Ferry V E, Atwater H A and Alivisatos P 2011 ACS Nano 5 8140
[92] Moreels I, Justo Y, De Geyter B, Haustraete K, Martins J C and Hens Z 2011 ACS Nano 5 2004
[93] Piliego C, Protesescu L, Bisri S Z, Kovalenko M V and Loi M A 2013 Energ. Environ. Sci. 6 3054
[94] Jean J, Chang S, Brown P R, Cheng J J, Rekemeyer P H, Bawendi M G, Gradecak S and Bulovic V 2013 Adv. Mater. 25 2790
[95] Chuang C H M, Brown P R, Bulovic V and Bawendi M G 2014 Nat. Mater. 13 796
[96] Clifford J P, Konstantatos G, Johnston K W, Hoogland S, Levina L and Sargent E H 2009 Nat. Nanotech. 4 5
[97] Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C and Nozik A J 2010 Adv. Mater. 22 3704
[98] Choi H, Kim J K, Song J H and Kim Y 2013 Appl. Phys. Lett. 102 193902
[99] Luther J M, Law M, Song Q, Perkins C L, Beard M C and Nozik A J 2008 ACS Nano 2 271
[100] Ma W, Luther J M, Zheng H M, Wu Y and Alivisatos A P 2009 Nano Lett. 9 1699
[101] Szendrei K, Gomulya W, Yarema M, Heiss W and Loi M A 2010 Appl. Phys. Lett. 97 203501
[102] Tang J, Wang X H, Brzozowski L, Barkhouse D A R, Debnath R, Levina L and Sargent E H 2010 Adv. Mater. 22 1398
[103] Choi M J, Oh J, Yoo J K, Choi J, Sim D M and Jung Y S 2014 Energ. Environ. Sci. 7 3052
[104] Mai X D, An H J, Song J H, Jang J, Kim S and Jeong S 2014 J. Materials Chem. A 2 7
[105] Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X H, Hoogland S, Debnath R, Brzozowski L, Sargent E H and Asbury J B 2012 ACS Nano 6 89
[106] Pal B N, Robel I, Mohite A, Laocharoensuk R, Werder D J and Klimov V I 2012 Adv. Funct. Mater. 22 1741
[107] Tang J A and Sargent E H 2011 Adv. Mater. 23 12
[108] Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, Hoogland S, Shukla H, Klem E J D, Levina L and Sargent E H 2008 Appl. Phys. Lett. 92 122111
[109] Luther J M, Law M, Beard M C, Reese M O, Ellingson R J and Nozik A J 2008 Nano Lett. 8 5
[110] Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X H, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Gratzel M and Sargent E H 2010 ACS Nano 4 3374
[111] Yuan M J, Voznyy O, Zhitomirsky D, Kanjanaboos P and Sargent E H 2015 Adv. Mater. 27 917
[112] Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J, Hoogl S and Sargent E H 2013 Adv. Energ. Mater. 9 6
[113] Tan F, Wang Z, Qu S, Cao D, Liu K, Jiang Q, Yang Y, Pang S, Zhang W, Lei Y and Wang Z 2016 Nanoscale 8 7
[114] Zhao T S, Goodwin E D, Guo J, Wang H, Diroll B T, Murray C B and Kagan C R 2016 ACS Nano 10 9267
[115] Wu R F, Yang Y H, Li M Z, Qin D H, Zhang Y D and Hou L T 2017 Nanomater. 7 201
[116] Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X H, Furukawa M, Levina L and Sargent E H 2012 Nano Lett. 12 6
[117] Liu H, Tang J, Kramer I J, Debnath R, Koleilat G I, Wang X H, Fisher A, Li R, Brzozowski L, Levina L and Sargent E H 2011 Adv. Mater. 23 3832
[118] Liu H, Zhitomirsky D, Hoogland S, Tang J, Kramer I J, Ning Z J and Sargent E H 2012 Appl. Phys. Lett. 101 151112
[119] Peng H W, Song J H, Kanatzidis M G and Freeman A J 2011 Phys. Rev. B 84 125207
[120] Speirs M J, Dirin D N, Abdu-Aguye M, Balazs D M, Kovalenko M V and Loi M A 2016 Energ. Environ. Sci. 9 2916
[121] Speirs M J, Balazs D M, Dirin D N, Kovalenko M V and Loi M A 2017 Appl. Phys. Lett. 110 103904
[122] Kim G-H, Arquer F P G, Yoon Y J, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 6
[123] Ning Z J, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J X, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H P, Rollny L, Labelle A, Carey G, Sutherland B, Hill I G, Amassian A, Liu H, Tang J, Bakr O M and Sargent E H 2014 Nat. Mater. 13 822
[124] Ning Z J, Zhitomirsky D, Adinolfi V, Sutherland B, Xu J X, Voznyy O, Maraghechi P, Lan X Z, Hoogland S, Ren Y and Sargent E H 2013 Adv. Mater. 25 1719
[125] Jin Z W, Yuan M J, Li H, Yang H, Zhou Q, Liu H B, Lan X Z, Liu M X, Wang J Z, Sargent E H and Li Y L 2016 Adv. Funct. Mater. 26 5284
[126] Remacle F 2000 J. Phys. Chem. A 104 4739
[127] Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z J, Labelle A J, Chou K W, Amassian A and Sargent E H 2012 Nat. Nanotech. 7 577
[128] Ning Z J, Ren Y, Hoogland S, Voznyy O, Levina L, Stadler P, Lan X Z, Zhitomirsky D and Sargent E H 2012 Adv. Mater. 24 6295
[129] Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X H, Debnath R, Cha D K, Chou K W, Fischer A, Amassian A, Asbury J B and Sargent E H 2011 Nat. Mater. 10 765
[130] Milliron D J 2014 Nat. Mater. 13 772
[131] Liu M X, Voznyy O, Sabatini R, de Arquer F P G, Munir R, Balawi A H, Lan X Z, Fan F J, Walters G, Kirmani A R, Hoogland S, Laquai F, Amassian A and Sargent E H 2017 Nat. Mater. 16 258
[132] Lan X Z, Voznyy O, Kiani A, de Arquer F P G, Abbas A S, Kim G H, Liu M X, Yang Z Y, Walters G, Xu J X, Yuan M J, Ning Z J, Fan F J, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A, Hoogland S and Sargent E H 2016 Adv. Mater. 28 299
[133] Lan X Z, Voznyy O, de Arquer F P G, Liu M X, Xu J X, Proppe A H, Walters G, Fan F J, Tan H R, Liu M, Yang Z Y, Hoogland S and Sargent E H 2016 Nano Lett. 16 4630
[134] Sun B, Voznyy O, Tan H R, Stadler P, Liu M X, Walters G, Proppe A H, Liu M, Fan J, Zhuang T T, Li J, Wei M Y, Xu J X, Kim Y, Hoogland S and Sargent E H 2017 Adv. Mater. 29 1700749
[135] Fischer A, Rollny L, Pan J, Carey G H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Kim J Y, Bakr O M and Sargent E H 2013 Adv. Mater. 25 5742.
[136] Kiani A, Sutherland B R, Kim Y, Ouellette O, Levina L, Walters G, Dinh C T, Liu M X, Voznyy O, Lan X Z, Labelle A J, Ip A H, Proppe A, Ahmed G H, Mohammed O F, Hoogland S and Sargent E H 2016 Appl. Phys. Lett. 109 183105.
[137] Yang Z Y, Janmohamed A, Lan X Z, de Arquer F P G, Voznyy O, Yassitepe E, Kim G H, Ning Z J, Gong X W, Comin R and Sargent E H 2015 Nano Lett. 15 7539
[138] Stavrinadis A, Pradhan S, Papagiorgis P, Itskos G and Konstantatos G 2017 ACS Energ. Lett. 2 739
[139] Peng J J, Chen Y N, Zhang X F, Dong A G and Liang Z Q 2016 Adv. Sci. 3 1500432
[140] Kim B S, Neo D C J, Hou B, Park J B, Cho Y, Zhang N L, Hong J, Pak S, Lee S, Sohn J I, Assender H E, Watt A A R, Cha S and Kim J M 2016 ACS Appl. Mater. Inter. 8 13902
[141] Liu M X, de Arquer F P G, Li Y Y, Lan X Z, Kim G H, Voznyy O, Jagadamma L K, Abbas A S, Hoogland S, Lu Z H, Kim J Y, Amassian A and Sargent E H 2016 Adv. Mater. 28 4142
[142] Zhang J B, Gao J B, Miller E M, Luther J M and Beard M C 2014 ACS Nano 8 614
[143] Baek S W, Song J H, Choi W, Song H, Jeong S and Lee J Y 2015 Adv. Mater. 27 8102
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[4] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[5] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[6] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[9] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[12] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[13] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[14] Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文). Chin. Phys. B, 2021, 30(8): 088803.
[15] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
No Suggested Reading articles found!