Special Issue:
TOPICAL REVIEW — New generation solar cells
|
TOPICAL REVIEW—New generation solar cells |
Prev
Next
|
|
|
Recent progress of colloidal quantum dot based solar cells |
Huiyun Wei(卫会云)1, Dongmei Li(李冬梅)2,3, Xinhe Zheng(郑新和)1, Qingbo Meng(孟庆波)2,3 |
1 School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, China;
2 Key Laboratory for Renewable Energy(CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and PbX (X=S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) exceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QDSCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given.
|
Received: 20 October 2017
Revised: 14 November 2017
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274134, 91433205, 51372270, 51402348, 51421002, 21173260, 11474333, 51372272, and 51627803), the Knowledge Innovation Program of the Chinese Academy of Sciences, the Natural Science Foundation of Beijing, China (Grant No. 4173077), USTB Talent Program, China (Grant No. 06500053), and Fundamental Research Funds for the Central Universities, China (Grant Nos. FRF-BR-16-018A, FRF-TP-17-069A1, and 06198178). |
Corresponding Authors:
Dongmei Li, Dongmei Li
E-mail: dmli@iphy.ac.cn;xinhezheng@ustb.edu.cn
|
Cite this article:
Huiyun Wei(卫会云), Dongmei Li(李冬梅), Xinhe Zheng(郑新和), Qingbo Meng(孟庆波) Recent progress of colloidal quantum dot based solar cells 2018 Chin. Phys. B 27 018808
|
[1] |
Burst J M, Duenow J N, Albin D S, Colegrove E, Reese M O, Aguiar J A, Jiang C S, Patel M K, Al-Jassim M M, Kuciauskas D, Swain S, Ablekim T, Lynn K G and Metzger W K 2016 Nat. Energ. 1 16055
|
[2] |
Chirila A, Reinhard P, Pianezzi F, Bloesch P, Uhl A R, Fella C, Kranz L, Keller D, Gretener C, Hagendorfer H, Jaeger D, Erni R, Nishiwaki S, Buecheler S and Tiwari A N 2013 Nat. Mater. 12 1107
|
[3] |
Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energ. 2 17032
|
[4] |
Park N G, Gratzel M, Miyasaka T and Emery K 2016 Nature Energ. 1 8
|
[5] |
Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D and Ding L M 2016 Adv. Sci. 3 1500324
|
[6] |
Gong J, Sumathy K, Qiao Q and Zhou Z 2017 Renew. Sust. Energ. Rev. 68 13
|
[7] |
Hagfeldt A, Boschloo G, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 9
|
[8] |
Dai S X, Zhao F W, Zhang Q Q, Lau T K, Li T F, Liu K, Ling Q D, Wang C R, Lu X H, You W and Zhan X W 2017 J. Am. Chem. Soc. 139 1336
|
[9] |
Jiao S, Du J, Du Z L, Long D H, Jiang W Y, Pan Z X, Li Y and Zhong X H 2017 J. Phys. Chem. Lett. 8 559
|
[10] |
Kagan C R, Lifshitz E, Sargent E H and Talapin D V 2016 Science 353 aac5523
|
[11] |
hi J, Huang Q, Wan Q and Xu X 2016 Acta Phys.-Chim. Sin. 32 822
|
[12] |
Huynh W U, Dittmer J J and Alivisatos A P 2002 Science 295 2425
|
[13] |
Lei Y, Jia H, He W, Zhang Y, Mi L, Hou H, Zhu G and Zheng Z 2012 J. Am. Chem. Soc. 134 17392
|
[14] |
Beard M C, Luther J M, Semonin O E and Nozik A J 2013 Accounts Chem. Res. 46 1252
|
[15] |
Semonin O E, Luther J M, Choi S, Chen H Y, Gao J B, Nozik A J and Beard M C 2011 Science 334 1530
|
[16] |
Shabaev A, Hellberg C S and Efros A L 2013 Accounts Chem. Res. 46 1242
|
[17] |
Zhang J B, Gao J B, Church C P, Miller E M, Luther J M, Klimov V I and Beard M C 2014 Nano Lett. 14 6010
|
[18] |
Ji M, Park S, Connor S T, Mokari T, Cui Y and Gaffney K J 2009 Nano Lett. 9 1217
|
[19] |
Hanna M C, Beard M C and Nozik A J 2012 J. Phys. Chem. Lett. 3 2857
|
[20] |
https://www.nrel.gov/pv/assets/images/efficiency-chart.png
|
[21] |
Yu J, Wang W R, Pan Z X, Du J, Ren Z W, Xue W N and Zhong X H 2017 J. Mater. Chem. A 5 14124
|
[22] |
Emin S, Singh S P, Han L Y, Satoh N and Islam A 2011 Sol. Energy 85 1264
|
[23] |
Sogabe T, Shen Q and Yamaguchi K 2016 J. Photon. Energy 6 040901
|
[24] |
Li W and Zhong X H 2015 J. Phys. Chem. Lett. 6 11
|
[25] |
Zhao K, Pan Z X and Zhong X H 2016 J. Phys. Chem. Lett. 7 406
|
[26] |
Kramer I J and Sargent E H 2014 Chem. Rev. 114 863
|
[27] |
Lan X, Masala S and Sargent E H 2014 Nat. Mater. 13 8
|
[28] |
Wei H Y, Wang G S, Wu H J, Luo Y H, Li D M and Meng Q B 2016 Acta Phys. Chim. Sin. 32 201
|
[29] |
Albero J, Clifford J N and Palomares E 2014 Coordin. Chem. Rev. 263-264 12
|
[30] |
Chuang C H and Lee Y L 2007 Appl. Phys. Lett. 91 053503
|
[31] |
Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Gratzel M and Nazeeruddin M K 2009 Nano Lett. 9 7
|
[32] |
Zhang Q X, Guo X Z, Huang X M, Huang S Q, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2012 Phys. Chem. Chem. Phys. 13 9
|
[33] |
Badawi A 2015 Chin. Phys. B 24 047205
|
[34] |
Zhang Q X, Chen G P, Yang Y Y, Shen X, Zhang Y D, Li C H, Yu R C, Luo Y H, Li D M and Meng Q B 2012 Phys. Chem. Chem. Phys. 14 6479
|
[35] |
Zhang Q X, Guo X Z, Huang X M, Huang S Q, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2011 Phys. Chem. Chem. Phys. 13 4659
|
[36] |
Tian J J, Lv L L, Fei C B, Wang Y, Liu X G and Cao G Z 2014 J. Mater. Chem. A 2 7
|
[37] |
Bai Y, Han C, Chen X Q, Yu H, Zong X, Li Z and Wang L Z 2015 Nano Energy 13 609
|
[38] |
Huang F, Zhang L S, Zhang Q F, Hou J, Wang H G, Wang H L, Peng S L, Liu J S and Cao G Z 2016 ACS Appl. Mater. Inter. 8 34482
|
[39] |
Jiao S, Wang J, Shen Q, Li Y and Zhong X H 2016 J. Mater. Chem. A 4 7214
|
[40] |
Koleilat G I, Levina L, Shukla H, Myrskog S H, Hinds S, Pattantyus-Abraham A G and Sargent E H 2008 ACS Nano 2 833
|
[41] |
Scholes G D and Rumbles G 2006 Nat. Mater. 5 920
|
[42] |
Schoolar R B and Dixon J R 1965 Phys. Rev. 137 4
|
[43] |
Lee J W, Son D Y, Ahn T K, Shin H W, Kim I Y, Hwang S J, Ko M J, Sul S, Han H and Park N G 2013 Sci. Rep. 3 1050
|
[44] |
Pan Z X, Zhao K, Wang J, Zhang H, Feng Y Y and Zhong X H 2013 ACS Nano 7 5215
|
[45] |
Kim S, Kang M, Kim S, Heo J H, Noh J H, Im S H, Seok S I and Kim S W 2013 ACS Nano 7 4756
|
[46] |
Pan Z X, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X H and Bisquert J 2014 J. Am. Chem. Soc. 136 9203
|
[47] |
Du J, Du Z L, Hu J S, Pan Z X, Shen Q, Sung J K, Long D H, Dong H, Sun L T, Zhong X H and Wan L J 2016 J. Am. Chem. Soc. 138 4201
|
[48] |
Bai B, Kou D X, Zhou W H, Zhou Z J and Wu S X 2015 Green Chem. 17 4377
|
[49] |
Li T L, Lee Y L and Teng H 2012 Energ. Environ. Sci. 5 5315
|
[50] |
McDaniel H, Fuke N, Makarov N S, Pietryga J M and Klimov V I 2013 Nature Commun. 4 2887
|
[51] |
McDaniel H, Fuke N, Pietryga J M and Klimov V I 2013 J. Phys. Chem. Lett. 245 355
|
[52] |
Zarei H and Malekfar R 2016 Chin. Phys. B 25 027103
|
[53] |
Lopez N, Reichertz L A, Yu K M, Campman K and Walukiewicz W 2011 Phys. Rev. Lett. 106 028701
|
[54] |
Okada Y, Ekins-Daukes N J, Kita T, Tamaki R, Yoshida M, Pusch A, Hess O, Phillips C C, Farrell D J, Yoshida K, Ahsan N, Shoji Y, Sogabe T and Guillemoles J F 2015 Appl. Phys. Rev. 2 021302
|
[55] |
Hu X, Zhang Q X, Huang X M, Li D M, Luo Y H and Meng Q B 2011 J. Mater. Chem. 21 15903
|
[56] |
Luo J H, Wei H Y, Huang Q L, Hu X, Zhao H F, Yu R C, Li D M, Luo Y H and Meng Q B 2013 Chem. Commun. 49 3881
|
[57] |
Luo J H, Wei H Y, Li F, Huang Q L, Li D M, Luo Y H and Meng Q B 2014 Chem. Commun. 50 3464
|
[58] |
Wei H Y, Wang G S, Luo Y H, Li D M and Meng Q B 2015 Electrochim. Acta 173 156
|
[59] |
Wei H Y, Wang G S, Shi J J, Wu H J, Luo Y H, Li D M and Meng Q B 2016 J. Mater. Chem. A 4 14194
|
[60] |
Jiao S, Shen Q, Mora-Sero I, Wang J, Pan Z X, Zhao K, Kuga Y, Zhong X H and Bisquert J 2015 ACS Nano 9 908
|
[61] |
Itzhakov S, Shen H, Buhbut S, Lin H and Oron D 2012 J. Phys. Chem. C 117 8
|
[62] |
Wang J and Han H 2010 J. Colloid Interf. Sci. 351 5
|
[63] |
Wu K, Liang G, Kong D, Chen J, Chen Z, Shan X, McBride J R and Lian T 2016 Chem. Sci. 7 7
|
[64] |
Wang J, Mora-Sero I, Pan Z X, Zhao K, Zhang H, Feng Y Y, Yang G, Zhong X H and Bisquert J 2013 J. Am. Chem. Soc. 135 15913
|
[65] |
Ahmed R, Zhao L, Mozer A J, Will G, Bell J and Wang H X 2015 J. Phys. Chem. C 119 2297
|
[66] |
Brennan T P, Trejo O, Roelofs K E, Xu J, Prinz F B and Bent S F 2013 J. Phys. Chem. A 1 7566
|
[67] |
Kim D H, Losego M D, Peng Q and Parsons G N 2016 Adv. Mater. Interf. 3 1600354
|
[68] |
Shen T, Tian J J, Li B and Cao G Z 2016 Sci. Chin. Mater. 59 833
|
[69] |
Ren Z W, Wang J, Pan Z X, Zhao K, Zhang H, Li Y, Zhao Y X, Mora-Sero I, Bisquert J and Zhong X H 2015 Chem. Mater. 27 8398
|
[70] |
Zhao K, Pan Z X, Mora-Sero I, Canovas E, Wang H, Song Y, Gong X Q, Wang J, Bonn M, Bisquert J and Zhong X H 2015 J. Am. Chem. Soc. 137 5602
|
[71] |
Jiang G, Pan Z, Ren Z, Du J, Yang C, Wang W and Zhong X 2016 J. Phys. Chem. A 29 6
|
[72] |
Du J, Meng X X, Zhao K, Li Y and Zhong X H 2015 J. Phys. Chem. A 3 17091
|
[73] |
Xia R, Wang S, Dong W and Fang X 2017 Acta Phys. -Chin. Sin. 33 670
|
[74] |
Deng M H, Huang S Q, Zhang Q X, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2010 Chem. Lett. 39 1168
|
[75] |
Yang Y, Zhu L, Sun H, Huang X M, Luo Y H, Li D M and Meng Q B 2012 ACS Appl. Mater.Inter. 4 7
|
[76] |
Zhang X L, Huang X M, Yang Y Y, Wang S, Gong Y, Luo Y H, Li D M and Meng Q B 2013 ACS Appl. Mater.Inter. 5 5954
|
[77] |
Xu J, Xiao J, Don J, Luo Y H, Li D M and Meng Q B 2014 Electrochim. Acta 127 6
|
[78] |
Kamaja C K, Devarapalli R R and Shelke M V 2017 ChemElectroChem 4 6
|
[79] |
Ghosh D, Halder G, Sahasrabudhe A and Bhattacharyya S 2016 Nanoscale 8 10632
|
[80] |
Zhang H, Yang C, Du Z L, Pan D Y and Zhong X H 2017 J. Mater. Chem. A 5 1614
|
[81] |
Pan Z X, Zhang H, Cheng K, Hou Y M, Hua J L and Zhong X H 2012 ACS Nano 6 3982
|
[82] |
Yang J W, Wang J, Zhao K, Izuishi T, Li Y, Shen Q and Zhong X H 2015 J.Phys. Chem. C 119 28800
|
[83] |
Wang G S, Wei H Y, Luo Y H, Wu H J, Li D M, Zhong X H and Meng Q B 2016 J. Power Sources 302 266
|
[84] |
Wang G S, Wei H Y, Shi J J, Xu Y Z, Wu H J, Luo Y H, Li D M and Meng Q B 2017 Nano Energy 35 17
|
[85] |
Wang J, Li Y, Shen Q, Izuishi T, Pan Z X, Zhao K and Zhong X H 2016 J. Mater. Chem. A 4 877
|
[86] |
Yang J W and Zhong X H 2016 J. Mater. Chem. A 4 16553
|
[87] |
Peng W X, Du J, Pan Z X, Nakazawa N, Sun J K, Du Z L, Shen G C, Yu J, Hu J S, Shen Q and Zhong X H 2017 ACS Appl. Mater. Inter. 9 5328
|
[88] |
Sambur J B, Novet T and Parkinson B A 2010 Science 330 4
|
[89] |
Cheng Y, Arinze E S, Palmquist N and Thon S M 2016 Nanophotonics 5 31
|
[90] |
Hines M A and Scholes G D 2003 Adv Mater 15 1844
|
[91] |
Ma W, Swisher S L, Ewers T, Engel J, Ferry V E, Atwater H A and Alivisatos P 2011 ACS Nano 5 8140
|
[92] |
Moreels I, Justo Y, De Geyter B, Haustraete K, Martins J C and Hens Z 2011 ACS Nano 5 2004
|
[93] |
Piliego C, Protesescu L, Bisri S Z, Kovalenko M V and Loi M A 2013 Energ. Environ. Sci. 6 3054
|
[94] |
Jean J, Chang S, Brown P R, Cheng J J, Rekemeyer P H, Bawendi M G, Gradecak S and Bulovic V 2013 Adv. Mater. 25 2790
|
[95] |
Chuang C H M, Brown P R, Bulovic V and Bawendi M G 2014 Nat. Mater. 13 796
|
[96] |
Clifford J P, Konstantatos G, Johnston K W, Hoogland S, Levina L and Sargent E H 2009 Nat. Nanotech. 4 5
|
[97] |
Luther J M, Gao J B, Lloyd M T, Semonin O E, Beard M C and Nozik A J 2010 Adv. Mater. 22 3704
|
[98] |
Choi H, Kim J K, Song J H and Kim Y 2013 Appl. Phys. Lett. 102 193902
|
[99] |
Luther J M, Law M, Song Q, Perkins C L, Beard M C and Nozik A J 2008 ACS Nano 2 271
|
[100] |
Ma W, Luther J M, Zheng H M, Wu Y and Alivisatos A P 2009 Nano Lett. 9 1699
|
[101] |
Szendrei K, Gomulya W, Yarema M, Heiss W and Loi M A 2010 Appl. Phys. Lett. 97 203501
|
[102] |
Tang J, Wang X H, Brzozowski L, Barkhouse D A R, Debnath R, Levina L and Sargent E H 2010 Adv. Mater. 22 1398
|
[103] |
Choi M J, Oh J, Yoo J K, Choi J, Sim D M and Jung Y S 2014 Energ. Environ. Sci. 7 3052
|
[104] |
Mai X D, An H J, Song J H, Jang J, Kim S and Jeong S 2014 J. Materials Chem. A 2 7
|
[105] |
Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X H, Hoogland S, Debnath R, Brzozowski L, Sargent E H and Asbury J B 2012 ACS Nano 6 89
|
[106] |
Pal B N, Robel I, Mohite A, Laocharoensuk R, Werder D J and Klimov V I 2012 Adv. Funct. Mater. 22 1741
|
[107] |
Tang J A and Sargent E H 2011 Adv. Mater. 23 12
|
[108] |
Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, Hoogland S, Shukla H, Klem E J D, Levina L and Sargent E H 2008 Appl. Phys. Lett. 92 122111
|
[109] |
Luther J M, Law M, Beard M C, Reese M O, Ellingson R J and Nozik A J 2008 Nano Lett. 8 5
|
[110] |
Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X H, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Gratzel M and Sargent E H 2010 ACS Nano 4 3374
|
[111] |
Yuan M J, Voznyy O, Zhitomirsky D, Kanjanaboos P and Sargent E H 2015 Adv. Mater. 27 917
|
[112] |
Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J, Hoogl S and Sargent E H 2013 Adv. Energ. Mater. 9 6
|
[113] |
Tan F, Wang Z, Qu S, Cao D, Liu K, Jiang Q, Yang Y, Pang S, Zhang W, Lei Y and Wang Z 2016 Nanoscale 8 7
|
[114] |
Zhao T S, Goodwin E D, Guo J, Wang H, Diroll B T, Murray C B and Kagan C R 2016 ACS Nano 10 9267
|
[115] |
Wu R F, Yang Y H, Li M Z, Qin D H, Zhang Y D and Hou L T 2017 Nanomater. 7 201
|
[116] |
Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X H, Furukawa M, Levina L and Sargent E H 2012 Nano Lett. 12 6
|
[117] |
Liu H, Tang J, Kramer I J, Debnath R, Koleilat G I, Wang X H, Fisher A, Li R, Brzozowski L, Levina L and Sargent E H 2011 Adv. Mater. 23 3832
|
[118] |
Liu H, Zhitomirsky D, Hoogland S, Tang J, Kramer I J, Ning Z J and Sargent E H 2012 Appl. Phys. Lett. 101 151112
|
[119] |
Peng H W, Song J H, Kanatzidis M G and Freeman A J 2011 Phys. Rev. B 84 125207
|
[120] |
Speirs M J, Dirin D N, Abdu-Aguye M, Balazs D M, Kovalenko M V and Loi M A 2016 Energ. Environ. Sci. 9 2916
|
[121] |
Speirs M J, Balazs D M, Dirin D N, Kovalenko M V and Loi M A 2017 Appl. Phys. Lett. 110 103904
|
[122] |
Kim G-H, Arquer F P G, Yoon Y J, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 6
|
[123] |
Ning Z J, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J X, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H P, Rollny L, Labelle A, Carey G, Sutherland B, Hill I G, Amassian A, Liu H, Tang J, Bakr O M and Sargent E H 2014 Nat. Mater. 13 822
|
[124] |
Ning Z J, Zhitomirsky D, Adinolfi V, Sutherland B, Xu J X, Voznyy O, Maraghechi P, Lan X Z, Hoogland S, Ren Y and Sargent E H 2013 Adv. Mater. 25 1719
|
[125] |
Jin Z W, Yuan M J, Li H, Yang H, Zhou Q, Liu H B, Lan X Z, Liu M X, Wang J Z, Sargent E H and Li Y L 2016 Adv. Funct. Mater. 26 5284
|
[126] |
Remacle F 2000 J. Phys. Chem. A 104 4739
|
[127] |
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z J, Labelle A J, Chou K W, Amassian A and Sargent E H 2012 Nat. Nanotech. 7 577
|
[128] |
Ning Z J, Ren Y, Hoogland S, Voznyy O, Levina L, Stadler P, Lan X Z, Zhitomirsky D and Sargent E H 2012 Adv. Mater. 24 6295
|
[129] |
Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X H, Debnath R, Cha D K, Chou K W, Fischer A, Amassian A, Asbury J B and Sargent E H 2011 Nat. Mater. 10 765
|
[130] |
Milliron D J 2014 Nat. Mater. 13 772
|
[131] |
Liu M X, Voznyy O, Sabatini R, de Arquer F P G, Munir R, Balawi A H, Lan X Z, Fan F J, Walters G, Kirmani A R, Hoogland S, Laquai F, Amassian A and Sargent E H 2017 Nat. Mater. 16 258
|
[132] |
Lan X Z, Voznyy O, Kiani A, de Arquer F P G, Abbas A S, Kim G H, Liu M X, Yang Z Y, Walters G, Xu J X, Yuan M J, Ning Z J, Fan F J, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A, Hoogland S and Sargent E H 2016 Adv. Mater. 28 299
|
[133] |
Lan X Z, Voznyy O, de Arquer F P G, Liu M X, Xu J X, Proppe A H, Walters G, Fan F J, Tan H R, Liu M, Yang Z Y, Hoogland S and Sargent E H 2016 Nano Lett. 16 4630
|
[134] |
Sun B, Voznyy O, Tan H R, Stadler P, Liu M X, Walters G, Proppe A H, Liu M, Fan J, Zhuang T T, Li J, Wei M Y, Xu J X, Kim Y, Hoogland S and Sargent E H 2017 Adv. Mater. 29 1700749
|
[135] |
Fischer A, Rollny L, Pan J, Carey G H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Kim J Y, Bakr O M and Sargent E H 2013 Adv. Mater. 25 5742.
|
[136] |
Kiani A, Sutherland B R, Kim Y, Ouellette O, Levina L, Walters G, Dinh C T, Liu M X, Voznyy O, Lan X Z, Labelle A J, Ip A H, Proppe A, Ahmed G H, Mohammed O F, Hoogland S and Sargent E H 2016 Appl. Phys. Lett. 109 183105.
|
[137] |
Yang Z Y, Janmohamed A, Lan X Z, de Arquer F P G, Voznyy O, Yassitepe E, Kim G H, Ning Z J, Gong X W, Comin R and Sargent E H 2015 Nano Lett. 15 7539
|
[138] |
Stavrinadis A, Pradhan S, Papagiorgis P, Itskos G and Konstantatos G 2017 ACS Energ. Lett. 2 739
|
[139] |
Peng J J, Chen Y N, Zhang X F, Dong A G and Liang Z Q 2016 Adv. Sci. 3 1500432
|
[140] |
Kim B S, Neo D C J, Hou B, Park J B, Cho Y, Zhang N L, Hong J, Pak S, Lee S, Sohn J I, Assender H E, Watt A A R, Cha S and Kim J M 2016 ACS Appl. Mater. Inter. 8 13902
|
[141] |
Liu M X, de Arquer F P G, Li Y Y, Lan X Z, Kim G H, Voznyy O, Jagadamma L K, Abbas A S, Hoogland S, Lu Z H, Kim J Y, Amassian A and Sargent E H 2016 Adv. Mater. 28 4142
|
[142] |
Zhang J B, Gao J B, Miller E M, Luther J M and Beard M C 2014 ACS Nano 8 614
|
[143] |
Baek S W, Song J H, Choi W, Song H, Jeong S and Lee J Y 2015 Adv. Mater. 27 8102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|