Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038804    DOI: 10.1088/1674-1056/ac464b
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
SPECIAL TOPIC—Emerging photovoltaic materials and devices Prev  

Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells

Ying Hu(胡颖)1,†, Jiaping Wang(王家平)1,†, Peng Zhao(赵鹏)1, Zhenhua Lin(林珍华)1,‡, Siyu Zhang(张思玉)1, Jie Su(苏杰)1, Miao Zhang(张苗)2, Jincheng Zhang(张进成)1,2, Jingjing Chang(常晶晶)1,2,§, and Yue Hao(郝跃)1
1 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an 710071, China
Abstract  Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic—inorganic hybrid perovskite solar cells (PSCs), but the larger voltage loss (Vloss) cannot be ignored, especially CsPbIBr2, which limits the improvement of efficiency. To reduce Vloss, one promising solution is the modification of the energy level alignment between the perovskite layer and adjacent charge transport layer (CTL), which can facilitate charge extraction and reduce carrier recombination rate at the perovskite/CTL interface. Therefore, the key issues of minimum Vloss and high efficiency of CsPbIBr2-based PSCs were studied in terms of the perovskite layer thickness, the effects of band offset of the CTL/perovskite layer, the doping concentration of the CTL, and the electrode work function in this study based on device simulations. The open-circuit voltage (Voc) is increased from 1.37 V to 1.52 V by replacing SnO2 with ZnO as the electron transport layer (ETL) due to more matching conduction band with the CsPbIBr2 layer.
Keywords:  all-inorganic perovskites      CsPbIBr2 solar cells      device simulation      voltage loss      Silvaco TCAD  
Received:  30 November 2021      Revised:  20 December 2021      Accepted manuscript online:  24 December 2021
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.fc (Modeling and analysis)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant No. 52192610), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020GY-310), Youth Project of Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-189), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (Grant No. 2020GXLH-Z-018), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Zhenhua Lin, Jingjing Chang     E-mail:;

Cite this article: 

Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃) Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells 2022 Chin. Phys. B 31 038804

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] NREL 2020 Best Research-Cell Efficiency Chart (accessed:May 2020)
[3] Sha W E I, Ren X, Chen L and Choy W C H 2015 Appl. Phys. Lett. 106 221104
[4] Shen W, Dong Y, Huang F, Cheng Y B and Zhong J 2021 Mater. Reports:Energy 1 100060
[5] Chang J, Lin Z, Zhu H, Isikgor F H, Xu Q H, Zhang C, Hao Y and Ouyang J 2016 J. Mater. Chem. A 4 16546
[6] Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S F and Hao Y 2018 Adv. Energy Mater. 8 1703432
[7] Zhou L, Lin Z, Ning Z, Li T, Guo X, Ma J, Su J, Zhang C, Zhang J, Liu S, Chang J and Hao Y 2019 Sol. RRL 3 1900293
[8] Zhang B, Su J, Guo X, Zhou L, Lin Z, Feng L, Zhang J, Chang J and Hao Y 2020 Adv. Sci. 7 1903044
[9] Yang J, Zhang P, Wang J and Wei S H 2020 Chin. Phys. B 29 108401
[10] Jesper Jacobsson T, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M and Hagfeldt A 2016 Energy Environ. Sci. 9 1706
[11] Liu L, Lu J, Wang H, Cui Z, Giorgi G, Bai Y and Chen Q 2021 Mater. Reports Energy 1 100064
[12] Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S and Yang B 2018 Adv. Mater. 30 1705393
[13] Chang J, Zhu H, Li B, Isikgor F H, Hao Y, Xu Q and Ouyang J 2016 J. Mater. Chem. A 4 887
[14] Di J, Chang J and Liu S (Frank) 2020 EcoMat 2 e12036
[15] Di J, Du J, Lin Z, Liu S Frank, Ouyang J and Chang J 2021 InfoMat 3 293
[16] Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W and Hagfeldt A 2017 Science 358 739
[17] Gao L, Spanopoulos I, Ke W, Huang S, Hadar I, Chen L, Li X, Yang G and Kanatzidis M G 2019 ACS Energy Lett. 4 1763
[18] Tang S, Deng Y, Zheng X, Bai Y, Fang Y, Dong Q, Wei H and Huang J 2017 Adv. Energy Mater. 7 1700302
[19] Yang S, Guo Z, Gao L, Yu F, Zhang C, Fan M, Wei G and Ma T 2019 Sol. RRL 3 1900212
[20] Guo Z, Jena A K, Takei I, Kim G M, Kamarudin M A, Sanehira Y, Ishii A, Numata Y, Hayase S and Miyasaka T 2021 Adv. Sci. 8 2103482
[21] Zhu J, Tang M, He B, Zhang W, Li X, Gong Z, Chen H, Duan Y and Tang Q 2020 J. Mater. Chem. A 8 20987
[22] Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q and Ma W 2018 Joule 2 2450
[23] Di J, Li H, Su J, Yuan H, Lin Z, Zhao K, Chang J and Hao Y 2021 Adv. Sci. 8 2103482
[24] Ma J, Lin Z, Guo X, Zhou L, He J, Yang Z, Zhang J, Hao Y, Liu S and Chang J 2021 J. Energy Chem. 63 558
[25] He J, Su J, Lin Z, Ma J, Zhou L, Zhang S, Liu S, Chang J and Hao Y 2021 Adv. Sci. 8 2101367
[26] Guo Y, Su J, Wang L, Lin Z, Hao Y and Chang J 2021 J. Phys. Chem. Lett. 12 3393
[27] Wang L, Su J, Guo Y, Lin Z, Hao Y and Chang J 2021 J. Phys. Chem. Lett. 12 1098
[28] Ma J, Su J, Lin Z, He J, Zhou L, Li T, Zhang J, Liu S, Chang J and Hao Y 2021 Energy Environ. Mater. eem2.12212
[29] Eperon G E, Paternó G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688
[30] Yoon S M, Min H, Kim J B, Kim G, Lee K S and Seok S Il 2021 Joule 5 183
[31] Gu X, Xiang W, Tian Q and Liu S (Frank) 2021 Angew. Chemie Int. Ed. 60 23164
[32] Zhou Q, Duan J, Yang X, Duan Y and Tang Q 2020 Angew. Chemie Int. Ed. 132 22181
[33] Duan J, Xu H, Sha W E I, Zhao Y, Wang Y, Yang X and Tang Q 2019 J. Mater. Chem. A 7 21036
[34] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
[35] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Il Seok S, Lee J and Seo J 2018 Nat. Energy 3 682
[36] Liu C, Zeng Q and Yang B 2019 Adv. Mater. Interfaces 6 1901136
[37] Zhou L, Su J, Lin Z, Guo X, Ma J, Li T, Zhang J, Chang J and Hao Y 2021 Research 2021 9836752
[38] Guo X, Su J, Lin Z, Wang X, Wang Q, Zeng Z, Chang J and Hao Y 2021 iScience 24 102276
[39] Zhang C, Lu Y N, Wu W Q and Wang L 2021 Nano Energy 81 105634
[40] Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q and Liu S (Frank) 2018 Joule 2 1500
[41] Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L and Cheng Y B 2015 J. Mater. Chem. A 3 8139
[42] Zhao P, Su J, Guo Y, Wang L, Lin Z, Zhang J, Hao Y, Ouyang X and Chang J 2021 Mater. Today Phys. 20 100446
[43] Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J and Hao Y 2018 Sol. Energy 169 11
[44] Zhao P, Su J, Lin Z, Wang J, Zhang J, Hao Y, Ouyang X and Chang J 2020 Mater. Today Energy 17 100481
[45] Zhao P, Lin Z, Wang J, Yue M, Su J, Zhang J, Chang J and Hao Y 2019 ACS Appl. Energy Mater. 2 4504
[46] Minemoto T and Julayhi J 2013 Curr. Appl. Phys. 13 103
[47] Ma J, Su J, Lin Z, Zhou L, He J, Zhang J, Liu S, Chang J and Hao Y 2020 Nano Energy 67 104241
[48] Yue M, Su J, Zhao P, Lin Z, Zhang J, Chang J and Hao Y 2019 Nano-Micro Lett. 11 91
[1] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[2] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[3] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[4] Efficient design of perovskite solar cell using mixed halide and copper oxide
Navneet kour, Rajesh Mehra, Chandni. Chin. Phys. B, 2018, 27(1): 018801.
[5] Simulation design of P-I-N-type all-perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Yi-Fan Gu(顾一帆). Chin. Phys. B, 2017, 26(2): 028803.
[6] Numerical simulation study of organic nonvolatile memory with polysilicon floating gate
Zhao-wen Yan(闫兆文), Jiao Wang(王娇), Jian-li Qiao(乔坚栗), Wen-jie Chen(谌文杰), Pan Yang(杨盼), Tong Xiao(肖彤), Jian-hong Yang(杨建红). Chin. Phys. B, 2016, 25(6): 067102.
[7] Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Jian-Zhuo Zhu(朱键卓). Chin. Phys. B, 2016, 25(10): 108802.
[8] Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar cells
Zhu Jian-Zhuo (朱键卓), Qi Ling-Hui (祁令辉), Du Hui-Jing (杜会静), Chai Ying-Chun (柴莺春). Chin. Phys. B, 2015, 24(10): 108501.
No Suggested Reading articles found!