1 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, Xi'an 710071, China
Abstract Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic—inorganic hybrid perovskite solar cells (PSCs), but the larger voltage loss (Vloss) cannot be ignored, especially CsPbIBr2, which limits the improvement of efficiency. To reduce Vloss, one promising solution is the modification of the energy level alignment between the perovskite layer and adjacent charge transport layer (CTL), which can facilitate charge extraction and reduce carrier recombination rate at the perovskite/CTL interface. Therefore, the key issues of minimum Vloss and high efficiency of CsPbIBr2-based PSCs were studied in terms of the perovskite layer thickness, the effects of band offset of the CTL/perovskite layer, the doping concentration of the CTL, and the electrode work function in this study based on device simulations. The open-circuit voltage (Voc) is increased from 1.37 V to 1.52 V by replacing SnO2 with ZnO as the electron transport layer (ETL) due to more matching conduction band with the CsPbIBr2 layer.
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant No. 52192610), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020GY-310), Youth Project of Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-189), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (Grant No. 2020GXLH-Z-018), and the Fundamental Research Funds for the Central Universities, China.
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃) Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells 2022 Chin. Phys. B 31 038804
[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc.131 6050 [2] NREL 2020 Best Research-Cell Efficiency Chart (accessed:May 2020) [3] Sha W E I, Ren X, Chen L and Choy W C H 2015 Appl. Phys. Lett.106 221104 [4] Shen W, Dong Y, Huang F, Cheng Y B and Zhong J 2021 Mater. Reports:Energy1 100060 [5] Chang J, Lin Z, Zhu H, Isikgor F H, Xu Q H, Zhang C, Hao Y and Ouyang J 2016 J. Mater. Chem. A4 16546 [6] Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S F and Hao Y 2018 Adv. Energy Mater.8 1703432 [7] Zhou L, Lin Z, Ning Z, Li T, Guo X, Ma J, Su J, Zhang C, Zhang J, Liu S, Chang J and Hao Y 2019 Sol. RRL3 1900293 [8] Zhang B, Su J, Guo X, Zhou L, Lin Z, Feng L, Zhang J, Chang J and Hao Y 2020 Adv. Sci.7 1903044 [9] Yang J, Zhang P, Wang J and Wei S H 2020 Chin. Phys. B29 108401 [10] Jesper Jacobsson T, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M and Hagfeldt A 2016 Energy Environ. Sci.9 1706 [11] Liu L, Lu J, Wang H, Cui Z, Giorgi G, Bai Y and Chen Q 2021 Mater. Reports Energy1 100064 [12] Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S and Yang B 2018 Adv. Mater.30 1705393 [13] Chang J, Zhu H, Li B, Isikgor F H, Hao Y, Xu Q and Ouyang J 2016 J. Mater. Chem. A4 887 [14] Di J, Chang J and Liu S (Frank) 2020 EcoMat2 e12036 [15] Di J, Du J, Lin Z, Liu S Frank, Ouyang J and Chang J 2021 InfoMat3 293 [16] Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W and Hagfeldt A 2017 Science358 739 [17] Gao L, Spanopoulos I, Ke W, Huang S, Hadar I, Chen L, Li X, Yang G and Kanatzidis M G 2019 ACS Energy Lett.4 1763 [18] Tang S, Deng Y, Zheng X, Bai Y, Fang Y, Dong Q, Wei H and Huang J 2017 Adv. Energy Mater.7 1700302 [19] Yang S, Guo Z, Gao L, Yu F, Zhang C, Fan M, Wei G and Ma T 2019 Sol. RRL3 1900212 [20] Guo Z, Jena A K, Takei I, Kim G M, Kamarudin M A, Sanehira Y, Ishii A, Numata Y, Hayase S and Miyasaka T 2021 Adv. Sci.8 2103482 [21] Zhu J, Tang M, He B, Zhang W, Li X, Gong Z, Chen H, Duan Y and Tang Q 2020 J. Mater. Chem. A 8 20987 [22] Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q and Ma W 2018 Joule 2 2450 [23] Di J, Li H, Su J, Yuan H, Lin Z, Zhao K, Chang J and Hao Y 2021 Adv. Sci. 8 2103482 [24] Ma J, Lin Z, Guo X, Zhou L, He J, Yang Z, Zhang J, Hao Y, Liu S and Chang J 2021 J. Energy Chem.63 558 [25] He J, Su J, Lin Z, Ma J, Zhou L, Zhang S, Liu S, Chang J and Hao Y 2021 Adv. Sci.8 2101367 [26] Guo Y, Su J, Wang L, Lin Z, Hao Y and Chang J 2021 J. Phys. Chem. Lett.12 3393 [27] Wang L, Su J, Guo Y, Lin Z, Hao Y and Chang J 2021 J. Phys. Chem. Lett.12 1098 [28] Ma J, Su J, Lin Z, He J, Zhou L, Li T, Zhang J, Liu S, Chang J and Hao Y 2021 Energy Environ. Mater. eem2.12212 [29] Eperon G E, Paternó G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A3 19688 [30] Yoon S M, Min H, Kim J B, Kim G, Lee K S and Seok S Il 2021 Joule5 183 [31] Gu X, Xiang W, Tian Q and Liu S (Frank) 2021 Angew. Chemie Int. Ed.60 23164 [32] Zhou Q, Duan J, Yang X, Duan Y and Tang Q 2020 Angew. Chemie Int. Ed.132 22181 [33] Duan J, Xu H, Sha W E I, Zhao Y, Wang Y, Yang X and Tang Q 2019 J. Mater. Chem. A7 21036 [34] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon.13 460 [35] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Il Seok S, Lee J and Seo J 2018 Nat. Energy3 682 [36] Liu C, Zeng Q and Yang B 2019 Adv. Mater. Interfaces6 1901136 [37] Zhou L, Su J, Lin Z, Guo X, Ma J, Li T, Zhang J, Chang J and Hao Y 2021 Research2021 9836752 [38] Guo X, Su J, Lin Z, Wang X, Wang Q, Zeng Z, Chang J and Hao Y 2021 iScience24 102276 [39] Zhang C, Lu Y N, Wu W Q and Wang L 2021 Nano Energy81 105634 [40] Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q and Liu S (Frank) 2018 Joule2 1500 [41] Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L and Cheng Y B 2015 J. Mater. Chem. A3 8139 [42] Zhao P, Su J, Guo Y, Wang L, Lin Z, Zhang J, Hao Y, Ouyang X and Chang J 2021 Mater. Today Phys.20 100446 [43] Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J and Hao Y 2018 Sol. Energy169 11 [44] Zhao P, Su J, Lin Z, Wang J, Zhang J, Hao Y, Ouyang X and Chang J 2020 Mater. Today Energy17 100481 [45] Zhao P, Lin Z, Wang J, Yue M, Su J, Zhang J, Chang J and Hao Y 2019 ACS Appl. Energy Mater.2 4504 [46] Minemoto T and Julayhi J 2013 Curr. Appl. Phys.13 103 [47] Ma J, Su J, Lin Z, Zhou L, He J, Zhang J, Liu S, Chang J and Hao Y 2020 Nano Energy67 104241 [48] Yue M, Su J, Zhao P, Lin Z, Zhang J, Chang J and Hao Y 2019 Nano-Micro Lett.11 91
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.