Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 088801    DOI: 10.1088/1674-1056/ac693d

Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management

Min Yue(岳敏)1,2,3, Yan Wang(王燕)1,2,†, Hui-Li Liang(梁会力)1,2, and Zeng-Xia Mei (梅增霞)1,2,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Monolithic perovskite/Si tandem solar cells (TSCs) have experienced rapid development in recent years, demonstrating its potential to exceed the Shockley-Queisser limit of single junction Si solar cells. Unlike typical organic-inorganic hybrid perovskite/silicon heterojunction TSCs, here we propose CsPbI3/TOPCon TSC, which is a promising architecture in consideration of its pleasurable thermal stability and good compatibility with current PERC production lines. The optical performance of CsPbI3/TOPCon TSCs is simulated by the combination of ray-tracing method and transfer matrix method. The light management of the CsPbI3/TOPCon TSC begins with the optimization of the surface texture on Si subcell, indicating that a bifacial inverted pyramid with a small bottom angle of rear-side enables a further minimization of the optical losses. Current matching between the subcells, as well as the parasitic absorption loss from the front transparent conductive oxide, is analyzed and discussed in detail. Finally, an optimized configuration of CsPbI3/TOPCon TSC with a 31.78% power conversion efficiency is proposed. This work provides a practical guidance for approaching high-efficiency perovskite/Si TSCs.
Keywords:  perovskite/Si tandem solar cells      simulation      TOPCon      CsPbI3  
Received:  16 March 2022      Revised:  14 April 2022      Accepted manuscript online:  22 April 2022
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904201 and 11875088) and the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019B1515120057).
Corresponding Authors:  Yan Wang, Zeng-Xia Mei     E-mail:;

Cite this article: 

Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞) Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management 2022 Chin. Phys. B 31 088801

[1] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energy 2 17032
[2] Richter A, Hermle M and Glunz S W 2013 IEEE J. Photovoltaics 3 1184
[3] Almansouri I, Ho-Baillie A, Bremner S P and Green M A 2015 IEEE J. Photovoltaics 5 968
[4] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
[5] Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A and De Angelis F 2018 Energy Environ. Sci. 11 702
[6] A K, K T, Y S and T M 2009 J. Am. Chem. Soc. 131 6050
[7] Kim M, Jeong J, Lu H, et al. 2022 Science 375 302
[8] Kim D, Jung H J, Park I J, Larson B W, Dunfield S P, Xiao C, Kim J, Tong J, Boonmongkolras P, Ji S G, Zhang F, Pae S R, Kim M, Kang S B, Dravid V, Berry J J, Kim J Y, Zhu K, Kim D H and Shin B 2020 Science 368 155
[9] Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D and Buonassisi T 2015 Appl. Phys. Lett. 106 121105
[10] NREL Best Research-Cell Efficiency Chart (accessed:May 2022)
[11] Bett A J, Schulze P S C, Winkler K M, Kabakli Ö S, Ketterer I, Mundt L E, Reichmuth S K, Siefer G, Cojocaru L, Tutsch L, Bivour M, Hermle M, Glunz S W and Goldschmidt J C 2020 Prog. Photovoltaics Res. Appl. 28 99
[12] Richter A, Müller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M and Glunz S W 2021 Nat. Energy 6 429
[13] Messmer C, Goraya B S, Nold S, Schulze P S C, Sittinger V, Schön J, Goldschmidt J C, Bivour M, Glunz S W and Hermle M 2021 Prog. Photovoltaics Res. Appl. 29 744
[14] Zhang Y and Zhou H P 2019 Acta Phys. Sin. 68 158804 (in Chinese)
[15] Eperon G E, Paternó G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688
[16] Yoon S M, Min H, Kim J B, Kim G, Lee K S and Seok S Il 2021 Joule 5 183
[17] Sutton R J, Filip M R, Haghighirad A A, Sakai N, Wenger B, Giustino F and Snaith H J 2018 ACS Energy Lett. 3 1787
[18] Moreno M, Murias D, Martínez J, Reyes-Betanzo C, Torres A, Ambrosio R, Rosales P, Roca i Cabarrocas P and Escobar M 2014 Sol. Energy 101 182
[19] Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 1
[20] Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135
[21] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C and McGehee M D 2018 ACS Energy Lett. 3 2173
[22] Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman Z C and Huang J 2020 Joule 4 850
[23] Wang Y, Yang L, Liu Y, Mei Z, Chen W, Li J, Liang H, Kuznetsov A and Xiaolong D 2015 Sci. Rep. 5 10843
[24] Simeon C, Baker-Finch and K R M 2011 Prog. Photovolt Res. Appl 19 406
[25] Hou F, Han C, Isabella O, Yan L, Shi B, Chen J, An S, Zhou Z, Huang W, Ren H, Huang Q, Hou G, Chen X, Li Y, Ding Y, Wang G, Wei C, Zhang D, et al. 2019 Nano Energy 56 234
[26] Shi D, Zeng Y and Shen W 2015 Sci. Rep. 5 16504
[27] Ba L, Liu H and Shen W 2018 Prog. Photovoltaics Res. Appl. 26 924
[28] Al-Ashouri A, Köhnen E, Li B, et al. 2020 Science 370 1300
[29] Holman Z C, Filipič M, Descoeudres A, De Wolf S, Smole F and Topič M, Ballif C 2013 J. Appl. Phys. 113 013107
[30] Manzoor S, Häusele J, Bush K A, Palmstrom A F, Carpenter J, Yu Z J, Bent S F, Mcgehee M D and Holman Z C 2018 Opt. Express 26 27441
[31] Yan W, Guo Y, Beri D, Dottermusch S, Chen H and Richards B S 2020 Phys. Status Solidi-Rapid Res. Lett. 14 2000070
[32] Mazzarella L, Werth M, Jäger K, Jošt M, Korte L, Albrecht S, Schlatmann R and Stannowski B 2018 Opt. Express 26 A487
[33] Green M A 2008 Sol. Energy Mater. Sol. Cells 92 1305
[34] Reiter S, Koper N, Reineke-Koch R, Larionova Y, Turcu M, Krügener J, Tetzlaff D, Wietler T, Höhne U, Kähler J D, Brendel R and Peibst R 2016 Energy Procedia 92 199
[35] Byrnes S J 2016 arXiv:1603.02720v5[physics.comp-ph]
[36] GitHub Nanunanuk SMARTI:Ray tracing tool for solar cell and module optics (accessed:May 2022)
[37] Wang J M, Chen K, Xie W G, Shi T T, Liu P Y, Zheng Y F and Zhu R 2019 Acta Phys. Sin. 68 158804 (in Chinese)
[38] Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B and Ballif C 2018 Nat. Mater. 17 820
[39] Tang H, Liu Y, Chen Q, Wang Y, Chen W, Wu J, Zhao Y and Du X 2019 ACS Appl. Electron. Mater. 1 2684
[40] Wang Y, Liu Y, Yang L, Chen W, Du X and Kuznetsov A 2017 Nanoscale 9 907
[41] Macleod H A 1986 Thin-Film Opt. Filters, 3rd edn. (Bristol:Institute of Physics Pub) pp. 43-46
[42] Calnan S and Tiwari A N 2010 Thin Solid Films 518 1839
[43] Battaglia C, Erni L, Boccard M, Barraud L, Escarré J, Sderstrm K, Bugnon G, Billet A, Ding L, Despeisse M, Haug F J, Wolf S De and Ballif C 2011 J. Appl. Phys. 109 114501
[44] Koida T, Fujiwara H and Kondo M 2009 Sol. Energy Mater. Sol. Cells 93 851
[45] Koida T, Kondo M, Tsutsumi K, Sakaguchi A, Suzuki M and Fujiwara H 2010 J. Appl. Phys. 107 033514
[46] Jošt M, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Schlatmann R, Topič M, Stannowski B and Albrecht S 2018 Energy Environ. Sci. 11 3511
[47] Jiang Y, Feurer T, Carron R, Sevilla G T, Moser T, Pisoni S, Erni R, Rossell M D, Ochoa M, Hertwig R, Tiwari A N and Fu F 2020 ACS Nano 14 7502
[48] Richter A, Benick J, Feldmann F, Fell A, Steinhauser B, Polzin J I, Tucher N, Murthy J N, Hermle Ma and Glunz S W 2019 36th Eur. Photovolt. Sol. Energy Conf. Exhib. September 9-13, 2019, Marseille, France, p. 13
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!