Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 036802    DOI: 10.1088/1674-1056/ac744e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)

Maurice Franck Kenmogne Ndjoko1, Bi-Dan Guo(郭必诞)2, Yin-Hui Peng(彭银辉)2, and Yu-Jun Zhao(赵宇军)1,2,†
1 Department of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
2 Department of Physics, South China University of Technology, Guangzhou 510640, China
Abstract  Two-dimensional (2D) ferroelectric compounds are a special class of materials that meet the need for devices miniaturization, which can lead to a wide range of applications. Here, we investigate ferroelectric properties of monolayer group-IV monochalcogenides $MX$ ($M ={\rm Sn}$, Ge; $X={\rm Se}$, Te, S) via strain engineering, and their effects with contaminated hydrogen are also discussed. GeSe, GeTe, and GeS do not go through transition up to the compressive strain of -5%, and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain. According to the calculated ferroelectric properties and the band gaps of these materials, we find that their band gap can be adjusted by strain for excellent photovoltaic applications. In addition, we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe. It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H. As a result, hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.
Keywords:  two-dimensional material      strain engineering      ferroelectric photovoltaic materials      hydrogen effect  
Received:  15 March 2022      Revised:  25 May 2022      Accepted manuscript online:  29 May 2022
PACS:  68.35.Gy (Mechanical properties; surface strains)  
  88.40.H- (Solar cells (photovoltaics))  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
Fund: Project supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12074126), the Foundation for Innovative Research Groups of NSFC (Grant No. 51621001), the Fundamental Research Funds for the Central Universities (Grant No. 2020ZYGXZR076).
Corresponding Authors:  Yu-Jun Zhao     E-mail:  zhaoyj@scut.edu.cn

Cite this article: 

Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军) Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S) 2023 Chin. Phys. B 32 036802

[1] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
[2] Scott J F 2007 Science 315 954
[3] Di Sante D, Stroppa A, Baronne P, Whangbo M H and Picozzi 2015 Phys. Rev. B 91 161401
[4] Kooi B J and Noheda B 2016 Science 353 221
[5] Ahn C H, Rabe K M and Triscone J M 2004 Science 303 488
[6] Chang K, Lin J, LiN H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W and Zhang Q 2016 Science 353 274
[7] Ding W J, Zhu J, Wang Z, GaO Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956
[8] Fei R X, Kang W and Yang L 2016 Phys. Rev. Lett. 117 097601
[9] Wu M H and Zeng X C 2016 Nano Lett. 16 3236
[10] Li Z W, Hu Y H, Li Y and Fang Z Y 2017 Chin. Phys. B 26 036802
[11] Ding J, Shao D F, Li M, Wen L and Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601
[12] Soleimani M and Pourfath M 2020 Nanoscale 12 22688
[13] Xu C, Chen Y, Meingast A, Guo X, Wang F, Lin Z, Lo T W, Maunders C, Lazer S and Wang N 2020 Phys. Rev. Lett. 125 047601
[14] Zhang X J, Chen P and Liu B G 2017 J. Mater. Chem. C 5 9898
[15] Xiao C, Wang F, Yang S A, Lu Y, Feng Y and Zhang S 2018 Adv. Funct. Mater. 28 1707383
[16] Wang B J, Li X H, Zhang L W, Wang G D and Ke S H 2017 Chin. Phys. B 26 057102
[17] Lei B, Zhang Y Y and Du S X 2019 Chin. Phys. B 28 046803
[18] Priydarshi A, Chauhan Y S, Bhowmick S and Agarwal A 2022 J. Appl. Phys. 131 034101
[19] Wang H and Qian X F 2017 2D Materials 4 015042
[20] Wan W H, Liu C, Xiao W and Yao Y 2017 Appl. Phys. Lett. 111 132904
[21] Fei R X and Yang L 2014 Nano Lett. 14 2889
[22] Peng X H, Wei Q and Copple A 2014 Phys. Rev. B 90 085402
[23] Priydarshi A, Chauhan Y S, Bhowmick S and Agarwal A 2018 Phys. Rev. B 97 115434
[24] Wang J, Yang G F, Xue J J, Lei J M, Chen D J, Lu H, Zhang R and Zheng Y D 2018 IEEE Electron Device Lett. 39 599
[25] Liu L, Yang Q, Wang Z, Ye H, Chen X, Fan X and Zhang G 2018 Appl. Surface Sci. 433 575
[26] Mao Y L, Long L, Yuan J, Zhong J and Zhao H 2018 Chem. Phys. Lett. 706 508
[27] Campbell C T 1997 Surface Sci. Rep. 27 1
[28] Zheng G L, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y, Peng J, Partridge J, Farrar L, Yi J and Xiong Y 2020 Phys. Rev. Lett. 125 047202
[29] Kresse G and Hafner J 1993 Phys. Rev. B 47 13115
[30] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Perdew J P, Ruzsinsky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[34] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[35] Xu T, Wang X, Mai J, Zhang J and Zhang T Y 2020 Adv. Electronic Mater. 6 1900932
[36] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B and Tangantsev 2004 Nature 430 761
[37] Hu Y H, Zhang S, Sun S, Xie M, Cai B and Zeng H 2015 Appl. Phys. Lett. 107 122107
[38] Nguyen H T T, Vu T V, Binh N T, Hoat D M, Hieu N V, Anh N T, Nguyen C V, Phuc H V, JapporH R, Obeid M M and Hieu N N 2020 Chem. Phys. 529 110543
[39] Shin H, Krogel J T, Gasperich K, Kent P R, Benali A and Heinonen O 2021 Phys. Rev. Mater. 5 024002
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[4] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[7] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[8] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[9] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[10] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[11] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[12] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[13] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[14] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[15] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
No Suggested Reading articles found!