INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell |
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮)† |
Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Recently, the efficiency of CdTe thin film solar cell has been improved by using new type of window layer MgxZn1-xO (MZO). However, it is hard to achieve such a high efficiency as expected. In this report a comparative study is carried out between the MZO/CdTe and CdS/CdTe solar cells to investigate the factors affecting the device performance of MZO/CdTe solar cells. The efficiency loss quantified by voltage-dependent photocurrent collection efficiency (ηC(V')) is 3.89% for MZO/CdTe and 1.53% for CdS/CdTe solar cells. The higher efficiency loss for the MZO/CdTe solar cell is induced by more severe carrier recombination at the MZO/CdTe p—n junction interface and in CdTe bulk region than that for the CdS/CdTe solar cell. Activation energy (Ea) of the reverse saturation current of the MZO/CdTe and CdS/CdTe solar cells are found to be 1.08 eV and 1.36 eV, respectively. These values indicate that for the CdS/CdTe solar cell the carrier recombination is dominated by bulk Shockley—Read—Hall (SRH) recombination and for the MZO/CdTe solar cell the carrier recombination is dominated by the p—n junction interface recombination. It is found that the tunneling-enhanced interface recombination is also involved in carrier recombination in the MZO/CdTe solar cell. This work demonstrates the poor device performance of the MZO/CdTe solar cell is induced by more severe interface and bulk recombination than that of the CdS/CdTe solar cell.
|
Received: 23 February 2022
Revised: 18 May 2022
Accepted manuscript online:
|
PACS:
|
88.40.jm
|
(Thin film III-V and II-VI based solar cells)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
73.50.Gr
|
(Charge carriers: generation, recombination, lifetime, trapping, mean free paths)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774140 and 61474103). |
Corresponding Authors:
De-Liang Wang
E-mail: eedewang@ustc.edu.cn
|
Cite this article:
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮) Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell 2022 Chin. Phys. B 31 108803
|
[1] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2016 Prog. Photovolt. 24 3 [2] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2016 Prog. Photovolt. 24 905 [3] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2012 Prog. Photovolt. 20 606 [4] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2015 Prog. Photovolt. 23 1 [5] Wu X 2004 Sol. Energy 77 803 [6] Kephart J M, Geisthardt R M and Sampath W S 2015 Prog. Photovolt. 23 1484 [7] Stephen B, Lukas K, Julian P and Nath T A 2013 Sol. Energy 1 1 [8] Meysing D M, Wolden C A, Griffith M M, Mahabaduge H, Pankow J, Reese M O, Burst J M, Rance W L and Barnes T M 2015 J. Vac. Sci. Technol. A 33 021203 [9] Baines T, Bowen L, Mendis B G and Major J D 2020 ACS Appl. Mater. Inter. 12 38070 [10] Kephart J M, McCamy J W, Ma Z, Ganjoo A, Alamgir F M and Sampath W S 2016 Sol. Energy Mater. Sol. Cells 157 266 [11] Swanson D E, Sites J R and Sampath W S 2017 Sol. Energy Mater. Sol. Cells 159 389 [12] Poplawsky J D, Guo W, Paudel N, Ng A, More K, Leonard D and Yan Y 2016 Nat. Commun. 7 12537 [13] Wang D, Wang G, Cai Y, Wu L, Zhu P and Wang D 2021 IEEE J. Photovolt. 11 974 [14] Ren S, Wang H, Li Y, Li H, He R, Wu L, Li W, Zhang J, Wang W and Feng L 2018 Sol. Energy Mater. Sol. Cells 187 97 [15] Munshi A H, Kephart J M, Abbas A, Shimpi T M, Barth K L, Walls J M and Sampath W S 2018 Sol. Energy Mater. Sol. Cells 176 9 [16] Li D B, Song Z, Awni R A, Bista S S, Shrestha N, Grice C R, Chen L, Liyanage G K, Razooqi M A, Phillips A B, Heben M J, Ellingson R J and Yan Y 2019 ACS Appl. Energy Mater. 2 2896 [17] Delahoy A E, Peng S, Patra P, Manda S, Saraf A, Chen Y, Tan X and Chin K K 2017 MRS Adv. 2 3203 [18] Bittau F, Potamialis C, Togay M, Abbas A, Isherwood P J M, Bowers J W and Walls J M 2018 Sol. Energy Mater. Sol. Cells 187 15 [19] Ablekim T, Perkins C, Zheng X, Reich C, Swanson D, Colegrove E, Duenow J N, Albin D, Nanayakkara S, Reese M O, Shimpi T, Sampath W and Metzger W K 2019 IEEE J. Photovolt. 9 888 [20] Awni R A, Li D B, Song Z, Bista S S, Razooqi M A, Grice C R, Chen L, Liyanage G K, Li C, Phillips A B, Heben M J, Ellingson R J, Li J V and Yan Y 2019 Prog. Photovolt. 27 1115 [21] Korevaar B A, Cournoyer J R, Sulima O, Yakimov A and Johnson J N 2014 Prog. Photovolt. 22 1040 [22] Metzger W K, Albin D, Levi D, Sheldon P, Li X, Keyes B M and Ahrenkiel R K 2003 J. Appl. Phys. 94 3549 [23] Albin D S, Yan Y and Al-Jassim M M 2002 Prog. Photovolt. 10 309 [24] Kaushal A and Kaur D 2009 Sol. Energy Mater. Sol. Cells 93 193 [25] Shen K, Bai Z, Deng Y, Yang R, Wang D, Li Q and Wang D 2016 RSC Adv. 6 52326 [26] Yang R, Wang D, Wan L and Wang D 2014 RSC Adv. 4 22162 [27] Amarasinghe M, Colegrove E, Moseley J, Moutinho H, Albin D, Duenow J, Jensen S, Kephart J, Sampath W, Sivananthan S, Al-Jassim M and Metzger W K 2018 Adv. Energy Mater. 8 1702666 [28] Wienke J, van der Zanden B, Tijssen M and Zeman M 2008 Sol. Energy Mater. Sol. Cells 92 884 [29] Hegedus S, Ryan D, Dobson K, McCandless B and Desai D 2003 MRS Online Proc. Libr. 763 [30] Teherani F H, Look D C, Rogers D J, Schoenfeld W V, Wei M, Boutwell R C and Liu H 2014 Oxide-based Mater. Devices V 8987 329 [31] Yu J, Tian N, Deng Y F and Zhang H H 2016 J. Alloys Compd. 667 359 [32] Shen K, Li Q, Wang D, Yang R, Deng Y, Jeng M J and Wang D 2016 Sol. Energy Mater. Sol. Cells 144 472 [33] Hegedus S, Desai D and Thompson C 2007 Prog. Photovolt. 15 587 [34] Hegedus S S and Shafarman W N 2004 Prog. Photovolt. 12 155 [35] Wang Z, Cheng Z, Delahoy A E and Chin K K 2013 IEEE J. Photovolt. 3 843 [36] Hegedus S S 1997 Prog. Photovolt. 5 151 [37] Hegedus S S 1997 Prog. Photovolt. 5 151 [38] Mitchell K, Fahrenbruch A L and Bube R H 1977 J. Appl. Phys. 48 829 [39] Kuciauskas D, Kanevce A, Burst J M, Duenow J N, Dhere R, Albin D S, Levi D H and Ahrenkiel R K 2013 IEEE J. Photovolt. 3 1319 [40] Turcu M, Pakma O and Rau U 2002 Appl. Phys. Lett. 80 2598 [41] Phillips J E, Birkmire R W, McCandless B E, Meyers P V and Shafarman W N 1996 Phys. Status Solidi B 194 31 [42] Hegedus S S and McCandless B E 2005 Sol. Energy Mater. Sol. Cells 88 75 [43] Chantana J, Kato T, Sugimoto H and Minemoto T 2017 Prog. Photovolt. 25 996 [44] Rau U 1999 Appl. Phys. Lett. 74 111 [45] Bayhan H and Kavasoǧlu A S 2005 Solid-State Electron. 49 991 [46] Bayhan H, Daǧkaldiran E T, Major J D, Durose K and Bayhan M 2019 Semicond. Sci. Technol. 34 075013 [47] Courel M, Valencia-Resendiz E, Andrade-Arvizu J A, Saucedo E and Vigil-Galán O 2017 Sol. Energy Mater. Sol. Cells 159 151 [48] Padovani F A and Stratton R 1966 Solid-State Electron. 9 695 [49] Jeong S, Song S H, Nagaich K, Campbell S A and Aydil E S 2011 Thin Solid Films 519 6613 [50] Rau U, Jasenek A, Schock H W, Engelhardt F and Meyer T 2000 Thin Solid Films 361 298 [51] Gümüş A, Türüt A and Yalçin N 2002 J. Appl. Phys. 91 245 [52] Proskuryakov Y Y, Durose K, Taele B M and Oelting S 2007 J. Appl. Phys. 102 024504 [53] Fedorenko Y G, Major J D, Pressman A, Phillips L J and Durose K 2015 J. Appl. Phys. 118 165705 [54] Walter T, Herberholz R, Müller C and Schock H W 1996 J. Appl. Phys. 80 4411 [55] Proskuryakov Y Y, Major J D, Durose K, Barrioz V, Irvine S J C, Jones E W and Lamb D 2007 Appl. Phys. Lett. 91 153505 [56] Soundararajan R, Lynn K G, Awadallah S, Szeles C and Wei S H 2006 J. Electron. Mater. 35 1333 [57] Gloeckler M, Fahrenbruch A L and Sites J R 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, May 11—18, 2003, Osaka, Japan, pp. 491—494 [58] Nardone M and Albin D S 2015 IEEE J. Photovolt. 5 962 [59] Komin V, Tetali B, Viswanathan V, Yu S, Morel D L and Ferekides C S 2003 Thin Solid Films 431—432 143 [60] He X, Song Y, Wu L, Li C, Zhang J and Feng L 2018 Mater. Res. Express 5 065907 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|