Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018809    DOI: 10.1088/1674-1056/27/1/018809
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

Precisely tuning Ge substitution for efficient solution-processed Cu2ZnSn(S, Se)4 solar cells

Xinshou Wang(王新收), Dongxing Kou(寇东星), Wenhui Zhou(周文辉), Zhengji Zhou(周正基), Qingwen Tian(田庆文), Yuena Meng(孟月娜), Sixin Wu(武四新)
The Key Laboratory for Special Functional Materials of MOE, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Abstract  The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have yielded a prospective conversion efficiency among all thin-film photovoltaic technology. However, its further development is still hindered by the lower open-circuit voltage (Voc), and the non-ideal bandgap of the absorber is an important factor affecting this issue. The substitution of Sn with Ge provides a unique ability to engineer the bandgap of the absorber film. Herein, a simple precursor solution approach was successfully developed to fabricate Cu2Zn(SnyGe1-y)(SxSe1-x)4 (CZTGSSe) solar cells. By precisely adjusting the Ge content in a small range, the Voc and Jsc are enhanced simultaneously. Benefitting from the optimized bandgap and the maintained spike structure and light absorption, the 10% Ge/(Ge+Sn) content device with a bandgap of approximately 1.1 eV yields the highest efficiency of 9.36%. This further indicates that a precisely controlled Ge content could further improve the cell performance for efficient CZTGSSe solar cells.
Keywords:  Cu2ZnSn (S      Se)4      solar cells      Ge substitution      bandgap  
Received:  28 September 2017      Revised:  17 November 2017      Accepted manuscript online: 
PACS:  88.40.ff (Performance testing)  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Fund: Project supported by the Joint Talent Cultivation Funds of NSFC-HN (Grant No. U1604138), the National Natural Science Foundation of China (Grant Nos. 21603058 and 51702085), the Innovation Research Team of Science and Technology in Henan Province, China (Grant No. 17IRTSTHN028), the Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT016), and the Young Key Teacher Foundation of Universities of Henan Province, China (Grant No. 2015GGJS-022).
Corresponding Authors:  Dongxing Kou, Sixin Wu     E-mail:  koudongxing@henu.edu.cn;wusixin@henu.edu.cn

Cite this article: 

Xinshou Wang(王新收), Dongxing Kou(寇东星), Wenhui Zhou(周文辉), Zhengji Zhou(周正基), Qingwen Tian(田庆文), Yuena Meng(孟月娜), Sixin Wu(武四新) Precisely tuning Ge substitution for efficient solution-processed Cu2ZnSn(S, Se)4 solar cells 2018 Chin. Phys. B 27 018809

[1] Qi Y F, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401
[2] Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K and Katagiri H 2007 Thin Solid Films 515 5997
[3] Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J, Hwang D K, Jeon C W, Nam D, Cheong H, Kang J K and Kim D H 2016 J. Mater. Chem. A 4 10151
[4] Weber A, Krauth H, Perlt S, Schubert B, Kotschau I, Schorr S and Schock H W 2009 Thin Solid Films 517 2524
[5] Tanaka T, Yoshida A, Saiki D, Saito K, Guo Q, Nishio M and Yamaguchi T 2010 Thin Solid Films 518 S29
[6] Zhao D D, Tian Q W, Zhou Z J, Wang G, Meng Y N, Kou D X, Zhou W H, Pan D C and Wu S X 2015 J. Mater. Chem. A 3 19263
[7] Bai B, Kou D X, Zhou W H, Zhou Z J and Wu S X 2015 Green Chem. 17 4377
[8] Chen H L, Kou D X, Chang Z X, Zhou W H, Zhou Z J and Wu S X 2014 ACS Appl. Mater. Inter. 6 20664
[9] Fu J, Tian Q W, Zhou Z J, Kou D X, Meng Y N, Zhou W H and Wu S X 2016 Chem. Mater. 28 5821
[10] Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H and Mitzi D B 2014 Adv. Mater. 26 7427
[11] Wang G, Zhao W G, Cui Y, Tian Q W, Gao S, Huang L J and Pan D C 2013 ACS Appl. Mater. Inter. 5 10042
[12] Xin H, Katahara J K, Braly I L and Hillhouse H W 2014 Adv. Energy Mater. 4 1301823
[13] Cao Y Y, Denny M S, Caspar J V, Farneth W E, Guo Q J, Ionkin A S, Johnson L K, Lu M J, Malajovich I, Radu D, Rosenfeld H D, Choudhury K R and Wu W 2012 J. Am. Chem. Soc. 134 15644
[14] Zhou H P, Hsu W C, Duan H S, Bob B, Yang W B, Song T B, Hsu C J and Yang Y 2013 Energ. Environ. Sci. 6 2822
[15] Wu W, Cao Y Y, Caspar J V, Guo Q J, Johnson L K, Malajovich I, Rosenfeld H D and Choudhury K R 2014 J. Mater. Chem. C 2 3777
[16] Guo J, Zhou W H, Pei Y L, Tian Q W, Kou D X, Zhou Z J, Meng Y N and Wu S X 2016 Sol. Energ. Mat. Sol. C 155 209
[17] Pei Y L, Guo J, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N and Wu S X 2017 Sol. Energ. 148 157
[18] Ahmed S, Reuter K B, Gunawan O, Guo L, Romankiw L T and Deligianni H 2012 Adv. Energ. Mater. 2 253
[19] Lei Y, Jia H M, He W W, Zhang Y G, Mi L W, Hou H W, Zhu G S and Zheng Z 2012 J. Am. Chem. Soc. 134 17392
[20] Guo Q J, Ford G M, Yang W C, Hages C J, Hillhouse H W and Agrawal R 2012 Sol. Energ. Mat. Sol. 105 132
[21] Kim I, Kim K, Oh Y, Woo K, Cao G, Jeong S and Moon J 2014 Chem. Mater. 26 3957
[22] Ford G M, Guo Q, Agrawal R and Hillhouse H W 2011 Chem. Mater. 23 2626
[23] Hages C J, Levcenco S, Miskin C K, Alsmeier J H, Abou-Ras D, Wilks R G, Bar M, Unold T and Agrawal R 2015 Prog. Photovol. 23 376
[24] Giraldo S, Neuschitzer M, Thersleff T, Lopez-Marino S, Sanchez Y, Xie H B, Colina M, Placidi M, Pistor P, Izquierdo-Roca V, Leifer K, Perez-Rodriguez A and Saucedo E 2015 Adv. Energ. Mater. 5 1501070
[25] Collord A D and Hillhouse H W 2016 Chem. Mater. 28 2067
[26] Bag S, Gunawan O, Gokmen T, Zhu Y and Mitzi D B 2012 Chem. Mater. 24 4588
[27] Khadka D B and Kim J 2015 J. Phys. Chem. C 119 1706
[28] Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y and Mitzi D B 2013 Adv. Energ. Mater. 3 201200348
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[6] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[7] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[8] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[9] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[10] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[11] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[12] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[13] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[14] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[15] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
No Suggested Reading articles found!