Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117103    DOI: 10.1088/1674-1056/ac1927
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field

Dong Wei(魏东)1, Yi Li(李依)1, Zhen Feng(冯振)1,2, Gaofu Guo(郭高甫)1, Yaqiang Ma(马亚强)1, Heng Yu(余恒)1, Qingqing Luo(骆晴晴)1, Yanan Tang(唐亚楠)3, and Xianqi Dai(戴宪起)1,†
1 School of Physics, Henan Normal University, Xinxiang 453007, China;
2 School of Materials Science and Engineering, Henan Engineering Research Center for Modification Technology of Metal Materials, Henan Institute of Technology, Xinxiang 453000, China;
3 School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
Abstract  The construction of van der Waals (vdW) heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties. The 3N-doped graphdiyne (N-GY) has been successfully synthesized in the laboratory. It could be assembled into a supercapacitor and can be used for tensile energy storage. However, the flat band and wide forbidden bands could hinder its application of N-GY layer in optoelectronic and nanoelectronic devices. In order to extend the application of N-GY layer in electronic devices, MoS2 was selected to construct an N-GY/MoS2 heterostructure due to its good electronic and optical properties. The N-GY/MoS2 heterostructure has an optical absorption range from the visible to ultraviolet with a absorption coefficient of 105 cm-1. The N-GY/MoS2 heterostructure exhibits a type-Ⅱ band alignment allows the electron-hole to be located on N-GY and MoS2 respectively, which can further reduce the electron-hole complexation to increase exciton lifetime. The power conversion efficiency of N-GY/MoS2 heterostructure is up to 17.77%, indicating it is a promising candidate material for solar cells. In addition, the external electric field and biaxial strain could effectively tune the electronic structure. Our results provide a theoretical support for the design and application of N-GY/MoS2 vdW heterostructures in semiconductor sensors and photovoltaic devices.
Keywords:  two-dimensional layer materials      heterostructures      electronic structure      power conversion efficiency  
Received:  09 May 2021      Revised:  04 July 2021      Accepted manuscript online:  30 July 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074053 and 61674053), the Natural Science Foundation of Henan Province, China (Grant No. 202300410237), the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT030), and the Fund from Henan Overseas Expertise Introduction Center for Discipline Innovation (Grant No. CXJD2019005).
Corresponding Authors:  Xianqi Dai     E-mail:  xqdai@htu.cn

Cite this article: 

Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起) Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field 2021 Chin. Phys. B 30 117103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C and Wu J Q 2015 Nano Lett. 12 5576
[3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[4] Ahin H, Cahangirov S, Topsakal M, Bekaroglu E and Ciraci S 2009 Phys. Rev. B 80 155453
[5] Cahangirov S, Topsakal M, Aktuerk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[6] Li T T, He C and Zhang W X 2020 Energy Storage Materials 25 866
[7] Novoselov K S, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 9439
[8] Buscema M, Island J O, Groenendijk D J, Blanter S I and Steele G A 2015 Chem. Soc. Rev. 44 3691
[9] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F and Unal A A 2014 Proc. Natl. Acad. Sci. USA 111 6198
[10] Li T T, He C and Zhang W X 2021 J. Energy Chem. 52 121
[11] He C, Liang Y and Zhang W X 2021 Appl. Surf. Sci. 553 149550
[12] Zhang W X, Yin Y and He C 2020 Phys. Chem. Chem. Phys. 22 26231
[13] He C, Han F S, Zhang J H and Wang W X 2020 J. Mater. Chem. C 8 6923
[14] Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717
[15] Padilha J E, Fazzio A and Silva A J R D 2015 Phys. Rev. Lett. 114 66803
[16] Li T T, He C and Zhang W X 2019 J. Mater. Chem. A 7 4134
[17] Zhao N and Schwingenschlgl U 2020 Nanoscale 12 11448
[18] Mortazavi B, Shahrokhi M, Madjet E A, Hussain T, Zhuang X and Rabczuk T 2019 J. Mater. Chem. C. 7 3025
[19] Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y and Li Y 2018 Nano Energy 44 144
[20] Pan Q Y, Liu H, Zhao Y J, Chen S Q, Xue B, Kan X N, Huang X W, Liu J and Li Z B 2018 ACS Appl. Mater. Inter. 11 2740
[21] Sun L, Jiang P H, Liu H J, Fan D D, Liang J H, Wei J, Cheng L, Zhang J and Shi J 2015 Carbon 90 255
[22] Wang X and Lu S 2013 J. Phys. Chem. C 117 19740
[23] Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Nano Lett. 16 5836
[24] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[25] Xiong W, Xia C, Du J, Wang T, Peng Y, Wei Z and Li J 2017 Nanotechnology 28 195702
[26] Ren C, Feng Y, Zhang S, Zhang C and Wang P 2017 RSC Adv. 7 9176
[27] Loan P T K, Zhang W, Lin C, Wei K, Li L and Chen C 2014 Adv. Mater. 26 4838
[28] Yu W J, Li Z, Zhou H, Chen Y, Wang Y, Huang Y and Duan X 2013 Nat. Mater. 12 246
[29] Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J and Yoo W J 2013 Nat. Commun. 4 1624
[30] Kohn W and Sham L J 1965 Phys. Rev. A 140 A1133
[31] Nityananda R, Hohenberg P and Kohn W 2017 Resonance 22 809
[32] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[38] Xia C X, Du J, Huang X W, Xiao W B and Xiong W Q 2018 Phys. Rev. B 97 115416
[39] Xia C X, Du J, Xiong W Q, Jia Y, Wei Z M and Li J B 2017 J. Mater. Chem. A 5 13400
[40] Lu N, Guo H Y, Li L, Dai J, Wang L, Mei W N, Wu X J and Zeng X C 2014 Nanoscale 6 2879
[41] Wei H, Li Z, and Yang J 2013 J. Chem. Phys. 138 124706
[42] Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H and Amal R 2012 J. Am. Chem. Soc. 134 4393
[43] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and Brink J 2007 Phys. Rev. B 76 073103
[44] Pan H, Zhang H, Wang H, Li J and Wang X 2020 Appl. Surf. Sci. 513 145694
[45] Pan H Z, Yin H, Li J F, Zhang H Y, Du Y W and Tang N J 2018 Phys. Chem. Chem. Phys. 20 14166
[46] Mina M, Nguyen T C and Susumu O 2016 Carbon 109 755
[47] Zhong C, Xie Y, Chen Y and Zhang S 2016 Carbon 99 65
[48] Endo S, Oka T and Aoki H 2010 Phys. Rev. B 81 113104
[49] Miao Z, Zheng L, Ming W, Wang Z and Feng L 2014 Phys. Rev. Lett. 113 236802
[50] Xiong W Q, Xia C X, Zhao X, Wang T X and Jia Y 2016 Carbon 109 737
[51] Ma Y Q, Zhao X, Wang T X, Li W, Chang S S, Wang X, Li Y, Zhao M Y and Dai X Q 2016 Phys. Chem. Chem. Phys. 18 28466
[52] Zhang Z, Xie Z, Liu J, Tian Y, Zhang Y, Wei X, Guo T, Ni L, Fan J and Weng Y 2020 Phys. Chem. Chem. Phys. 22 5873
[53] Zhang Z H, Zhang Y, Xie Z, Wei X, Guo T T and Fan J B 2019 Phys. Chem. Chem. Phys. 21 5627
[54] Zeng H, Zhao J, Cheng A Q, Zhang L, He Z and Chen R S 2017 Nanotechnology 29 075201
[55] Fan Y C, Wang J R and Zhao M W 2019 Nanoscale 11 14836
[56] Kaur S, Kumar A, Srivastava S, Tankeshwar K and Pandey R 2018 J. Phys. Chem. C 122 26032
[57] Mao Y L, Xu C S, Yuan J M and Zhao H 2019 J. Mater. Chem. A 7 11265
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[11] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[12] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[13] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[14] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!