CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field |
Dong Wei(魏东)1, Yi Li(李依)1, Zhen Feng(冯振)1,2, Gaofu Guo(郭高甫)1, Yaqiang Ma(马亚强)1, Heng Yu(余恒)1, Qingqing Luo(骆晴晴)1, Yanan Tang(唐亚楠)3, and Xianqi Dai(戴宪起)1,† |
1 School of Physics, Henan Normal University, Xinxiang 453007, China; 2 School of Materials Science and Engineering, Henan Engineering Research Center for Modification Technology of Metal Materials, Henan Institute of Technology, Xinxiang 453000, China; 3 School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China |
|
|
Abstract The construction of van der Waals (vdW) heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties. The 3N-doped graphdiyne (N-GY) has been successfully synthesized in the laboratory. It could be assembled into a supercapacitor and can be used for tensile energy storage. However, the flat band and wide forbidden bands could hinder its application of N-GY layer in optoelectronic and nanoelectronic devices. In order to extend the application of N-GY layer in electronic devices, MoS2 was selected to construct an N-GY/MoS2 heterostructure due to its good electronic and optical properties. The N-GY/MoS2 heterostructure has an optical absorption range from the visible to ultraviolet with a absorption coefficient of 105 cm-1. The N-GY/MoS2 heterostructure exhibits a type-Ⅱ band alignment allows the electron-hole to be located on N-GY and MoS2 respectively, which can further reduce the electron-hole complexation to increase exciton lifetime. The power conversion efficiency of N-GY/MoS2 heterostructure is up to 17.77%, indicating it is a promising candidate material for solar cells. In addition, the external electric field and biaxial strain could effectively tune the electronic structure. Our results provide a theoretical support for the design and application of N-GY/MoS2 vdW heterostructures in semiconductor sensors and photovoltaic devices.
|
Received: 09 May 2021
Revised: 04 July 2021
Accepted manuscript online: 30 July 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074053 and 61674053), the Natural Science Foundation of Henan Province, China (Grant No. 202300410237), the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT030), and the Fund from Henan Overseas Expertise Introduction Center for Discipline Innovation (Grant No. CXJD2019005). |
Corresponding Authors:
Xianqi Dai
E-mail: xqdai@htu.cn
|
Cite this article:
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起) Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field 2021 Chin. Phys. B 30 117103
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C and Wu J Q 2015 Nano Lett. 12 5576 [3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [4] Ahin H, Cahangirov S, Topsakal M, Bekaroglu E and Ciraci S 2009 Phys. Rev. B 80 155453 [5] Cahangirov S, Topsakal M, Aktuerk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804 [6] Li T T, He C and Zhang W X 2020 Energy Storage Materials 25 866 [7] Novoselov K S, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 9439 [8] Buscema M, Island J O, Groenendijk D J, Blanter S I and Steele G A 2015 Chem. Soc. Rev. 44 3691 [9] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F and Unal A A 2014 Proc. Natl. Acad. Sci. USA 111 6198 [10] Li T T, He C and Zhang W X 2021 J. Energy Chem. 52 121 [11] He C, Liang Y and Zhang W X 2021 Appl. Surf. Sci. 553 149550 [12] Zhang W X, Yin Y and He C 2020 Phys. Chem. Chem. Phys. 22 26231 [13] He C, Han F S, Zhang J H and Wang W X 2020 J. Mater. Chem. C 8 6923 [14] Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 ACS Nano 8 12717 [15] Padilha J E, Fazzio A and Silva A J R D 2015 Phys. Rev. Lett. 114 66803 [16] Li T T, He C and Zhang W X 2019 J. Mater. Chem. A 7 4134 [17] Zhao N and Schwingenschlgl U 2020 Nanoscale 12 11448 [18] Mortazavi B, Shahrokhi M, Madjet E A, Hussain T, Zhuang X and Rabczuk T 2019 J. Mater. Chem. C. 7 3025 [19] Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y and Li Y 2018 Nano Energy 44 144 [20] Pan Q Y, Liu H, Zhao Y J, Chen S Q, Xue B, Kan X N, Huang X W, Liu J and Li Z B 2018 ACS Appl. Mater. Inter. 11 2740 [21] Sun L, Jiang P H, Liu H J, Fan D D, Liang J H, Wei J, Cheng L, Zhang J and Shi J 2015 Carbon 90 255 [22] Wang X and Lu S 2013 J. Phys. Chem. C 117 19740 [23] Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Nano Lett. 16 5836 [24] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [25] Xiong W, Xia C, Du J, Wang T, Peng Y, Wei Z and Li J 2017 Nanotechnology 28 195702 [26] Ren C, Feng Y, Zhang S, Zhang C and Wang P 2017 RSC Adv. 7 9176 [27] Loan P T K, Zhang W, Lin C, Wei K, Li L and Chen C 2014 Adv. Mater. 26 4838 [28] Yu W J, Li Z, Zhou H, Chen Y, Wang Y, Huang Y and Duan X 2013 Nat. Mater. 12 246 [29] Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J and Yoo W J 2013 Nat. Commun. 4 1624 [30] Kohn W and Sham L J 1965 Phys. Rev. A 140 A1133 [31] Nityananda R, Hohenberg P and Kohn W 2017 Resonance 22 809 [32] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [34] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865 [35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [36] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [38] Xia C X, Du J, Huang X W, Xiao W B and Xiong W Q 2018 Phys. Rev. B 97 115416 [39] Xia C X, Du J, Xiong W Q, Jia Y, Wei Z M and Li J B 2017 J. Mater. Chem. A 5 13400 [40] Lu N, Guo H Y, Li L, Dai J, Wang L, Mei W N, Wu X J and Zeng X C 2014 Nanoscale 6 2879 [41] Wei H, Li Z, and Yang J 2013 J. Chem. Phys. 138 124706 [42] Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H and Amal R 2012 J. Am. Chem. Soc. 134 4393 [43] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and Brink J 2007 Phys. Rev. B 76 073103 [44] Pan H, Zhang H, Wang H, Li J and Wang X 2020 Appl. Surf. Sci. 513 145694 [45] Pan H Z, Yin H, Li J F, Zhang H Y, Du Y W and Tang N J 2018 Phys. Chem. Chem. Phys. 20 14166 [46] Mina M, Nguyen T C and Susumu O 2016 Carbon 109 755 [47] Zhong C, Xie Y, Chen Y and Zhang S 2016 Carbon 99 65 [48] Endo S, Oka T and Aoki H 2010 Phys. Rev. B 81 113104 [49] Miao Z, Zheng L, Ming W, Wang Z and Feng L 2014 Phys. Rev. Lett. 113 236802 [50] Xiong W Q, Xia C X, Zhao X, Wang T X and Jia Y 2016 Carbon 109 737 [51] Ma Y Q, Zhao X, Wang T X, Li W, Chang S S, Wang X, Li Y, Zhao M Y and Dai X Q 2016 Phys. Chem. Chem. Phys. 18 28466 [52] Zhang Z, Xie Z, Liu J, Tian Y, Zhang Y, Wei X, Guo T, Ni L, Fan J and Weng Y 2020 Phys. Chem. Chem. Phys. 22 5873 [53] Zhang Z H, Zhang Y, Xie Z, Wei X, Guo T T and Fan J B 2019 Phys. Chem. Chem. Phys. 21 5627 [54] Zeng H, Zhao J, Cheng A Q, Zhang L, He Z and Chen R S 2017 Nanotechnology 29 075201 [55] Fan Y C, Wang J R and Zhao M W 2019 Nanoscale 11 14836 [56] Kaur S, Kumar A, Srivastava S, Tankeshwar K and Pandey R 2018 J. Phys. Chem. C 122 26032 [57] Mao Y L, Xu C S, Yuan J M and Zhao H 2019 J. Mater. Chem. A 7 11265 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|