Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088803    DOI: 10.1088/1674-1056/abfbcb
RAPID COMMUNICATION Prev   Next  

Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells

Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文)
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Abstract  Formamidinium lead triiodide (FAPbI3) is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability. However, quite a few researches focused on the stability of the FAPbI3 perovskite precursor solutions. Besides, the most efficient FAPbI3 layers are prepared by the spin-coating method, which is limited to the size of the device. Herein, the stability of FAPbI3 perovskite solution with methylammonium chloride (MACl) or cesium chloride (CsCl) additive is studied for preparing perovskite film through an upscalable blade-coating method. Each additive works well for achieving a high-quality FAPbI3 film, resulting in efficient carbon electrode perovskite solar cells (pero-SCs) in the ambient condition. However, the perovskite solution with MACl additive shows poor aging stability that no α-FAPbI3 phase is observed when the solution is aged over one week. While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pure α-FAPbI3 perovskite film even the solution is aged over one month. During the solution aging process, the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducing δ-phase FAPbI3. Whereas, replacing MACl with CsCl could effectively solve this issue. Our founding shows that there is a great need to develop a non-MACl FAPbI3 perovskite precursor solution for cost-effective preparation of pero-SCs.
Keywords:  perovskite precursor solution      formamidinium lead iodide      blade-coating      carbon electrode  
Received:  31 March 2021      Revised:  24 April 2021      Accepted manuscript online:  27 April 2021
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the Key Research and Development Program of China (Grant No. 2020YFB1506400), the National Natural Science Foundation of China (Grant Nos. 51922074, 51673138, 51820105003, and 22075194), the Tang Scholar, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Collaborative Innovation Center of Suzhou Nano Science and Technology.
Corresponding Authors:  Fu Yang, Yaowen Li     E-mail:  fuyang@suda.edu.cn;ywli@suda.edu.cn

Cite this article: 

Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文) Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells 2021 Chin. Phys. B 30 088803

[1] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
[2] Diao X, Tang Y and Xie Q 2019 Chin. Phys. B 28 17802
[3] Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H and Seok S I 2019 Science 366 749
[4] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M and Kim J Y 2021 Nature 592 381
[5] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[6] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[7] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
[8] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X and You J 2016 Nat. Energy 2 16177
[9] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[10] Xu G, Xue R, Stuard S J, Ade H, Zhang C, Yao J, Li Y and Li Y 2021 Adv. Mater. 33 2006753
[11] Yang F, Dong L, Jang D, Tam K C, Zhang K, Li N, Guo F, Li C, Arrive C, Bertrand M, Brabec C J and Egelhaaf H J 2020 Adv. Energy Mater. 10 2001869
[12] Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y and Huang W 2021 Science 371 1359
[13] Wang X, Fan Y, Wang L, Chen C, Li Z, Liu R, Meng H, Shao Z, Du X, Zhang H, Cui G and Pang S 2020 Chem 6 1369
[14] Bruening K, Dou B, Simonaitis J, Lin Y Y, van Hest M F and Tassone C J 2018 Joule 2 2464
[15] Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F and Zhu K 2018 Nat. Rev. Mater. 3 1
[16] Cai M, Wu Y, Chen H, Yang X, Qiang Y and Han L 2017 Adv. Sci. 4 1600269
[17] Qiu L, He S, Ono L K, Liu S and Qi Y 2019 ACS Energy Lett. 4 2147
[18] Guo F, He W, Qiu S, Wang C, Liu X, Forberich K, Brabec C J and Mai Y 2019 Adv. Funct. Mater. 29 1900964
[19] Guo F, Qiu S, Hu J, Wang H, Cai B, Li J, Yuan X, Liu X, Forberich K and Brabec C J 2019 Adv. Sci. 6 1901067
[20] Xue R, Zhang M, Luo D, Chen W, Zhu R, Yang M, Li Y and Li Y 2020 Sci. China Chem. 63 987
[21] Yang F, Kamarudin M A, Hirotani D, Zhang P, Kapil G, Ng C H, Ma T and Hayase S 2019 Sol. RRL 3 1800275
[22] Yang F, Zhang P, Kamarudin M A, Kapil G, Ma T and Hayase S 2018 Adv. Funct. Mater. 28 1804856
[23] Dou B, Whitaker J B, Bruening K, Moore D T, Wheeler L M, Ryter J, Breslin N J, Berry J J, Garner S M and Barnes F S 2018 ACS Energy Lett. 3 2558
[24] Hu H, Ren Z, Fong P W, Qin M, Liu D, Lei D, Lu X and Li G 2019 Adv. Funct. Mater. 29 1900092
[25] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J and Huang J 2018 Nat. Energy 3 560
[26] Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B and Huang J 2020 Adv. Energy Mater. 10 1903108
[27] Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B and Huang J 2019 Sci. Adv. 5 eaax7537
[28] Wu W Q, Yang Z, Rudd P N, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q and Liu Y 2019 Sci. Adv. 5 eaav8925
[29] Fagiolari L and Bella F 2019 Energy Environ. Sci. 12 3437
[30] Gao L, Zhou Y, Meng F, Li Y, Liu A, Li Y, Zhang C, Fan M, Wei G and Ma T 2020 Carbon 162 267
[31] Yang F, Kamarudin M A, Kapil G, Hirotani D, Zhang P, Ng C H, Ma T and Hayase S 2018 ACS Appl. Mater. Interfaces 10 24543
[32] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522
[33] Kim H D, Ohkita H, Benten H and Ito S 2016 Adv. Mater. 28 917
[34] Castro-Méndez A F, Hidalgo J and Correa-Baena J P 2019 Adv. Energy Mater. 9 1901489
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[4] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[5] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[6] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[9] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[10] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[11] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[12] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[13] Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field
Dong Wei(魏东), Yi Li(李依), Zhen Feng(冯振), Gaofu Guo(郭高甫), Yaqiang Ma(马亚强), Heng Yu(余恒), Qingqing Luo(骆晴晴), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(11): 117103.
[14] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[15] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
No Suggested Reading articles found!