Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038801    DOI: 10.1088/1674-1056/ac1fda
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer

Qiaopeng Cui(崔翘鹏)1, Liang Zhao(赵亮)1, Xuewen Sun(孙学文)1, Qiannan Yao(姚倩楠)1, Sheng Huang(黄胜)1,†, Lei Zhu(朱磊)2, Yulong Zhao(赵宇龙)1, Jian Song(宋健)1,‡, and Yinghuai Qiang(强颖怀)1
1 The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China;
2 Advanced Analysis&Computation Center, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Perovskite solar cells (PSCs) are the most promising commercial photoelectric conversion technology in the future. The planar p-i-n structure cells have advantages in negligible hysteresis, low temperature preparation and excellent stability. However, for inverted planar PSCs, the non-radiative recombination at the interface is an important reason that impedes the charge transfer and improvement of power conversion efficiency. Having a homogeneous, compact, and energy-level-matched charge transport layer is the key to reducing non-radiative recombination. In our study, NiO$_{x}$/Sr:NiO$_{x}$ bilayer hole transport layer (HTL) improves the holes transmission of NiO$_{x}$ based HTL, reduces the recombination in the interface between perovskite and HTL layer and improves the device performance. The bilayer HTL enhances the hole transfer by forming a driving force of an electric field and further improves $J_{\rm sc}$. As a result, the device has a power conversion efficiency of 18.44%, a short circuit current density of 22.81 mA$\cdot$cm$^{-2}$ and a fill factor of 0.80. Compared to the pristine PSCs, there are certain improvements of optical parameters. This method provides a new idea for the future design of novel hole transport layers and the development of high-performance solar cells.
Keywords:  perovskite solar cells      nickel oxide      Sr doping      bilayer hole transport layer  
Received:  16 July 2021      Revised:  18 August 2021      Accepted manuscript online:  22 August 2021
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  78.56.-a (Photoconduction and photovoltaic effects)  
Fund: This work was supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2021QN1110).
Corresponding Authors:  Sheng Huang, Jian Song     E-mail:  huangsheng@cumt.edu.cn;jsoong@cumt.edu.cn

Cite this article: 

Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀) Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer 2022 Chin. Phys. B 31 038801

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768
[3] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D and Yan C H 2019 Science 363 265
[4] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X and Han L 2019 Science 365 687
[5] Song J, Li S P, Zhao Y L, Yuan J, Zhu Y, Fang Y, Zhu L, Gu X Q and Qiang Y H 2017 J. Alloys Compd. 694 1232
[6] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M and Kim J Y 2021 Nature 592 381
[7] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[8] Yuan S, Liu Q W, Tian Q S, Jin Y, Wang Z K and Liao L S 2020 Adv. Funct. Mater. 30 1909222
[9] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[10] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M 2014 Adv. Mater. 26 1584
[11] Yang Y, Song J, Zhao Y L, Zhu L, Gu X Q, Gu Y Q, Che M and Qiang Y H 2016 J. Alloys Compd. 684 84
[12] Xi J, Xi K, Sadhanala A, Zhang K H L, Li G, Dong H, Lei T, Yuan F, Ran C, Jiao B, Coxon P R, Harris C J, Hou X, Kumar R V and Wu Z 2019 Nano Energy 56 741
[13] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K and He Z B 2017 Adv. Energy Mater. 7 1700722
[14] Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B and He Z 2019 Adv. Energy Mater. 9 1803872
[15] Wu S, Zhang J, Li Z, Liu D, Qin M, Cheung S H, Lu X, Lei D, So S K, Zhu Z and Jen A K Y 2020 Joule 4 1248
[16] Song J, Yang Y, Zhao Y L, Che M, Zhu L, Gu X Q and Qiang Y H 2017 Mater. Sci. Engin. B 217 18
[17] Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K and Bolink H J 2014 Nat. Photon. 8 128
[18] Hou S, Shi B, Wang P, Li Y, Zhang J, Chen P, Chen B, Hou F, Huang Q, Ding Y, Li Y, Zhang D, Xu S, Zhao Y and Zhang X 2020 Chin. Phys. B 29 078801
[19] Chen W Y, Deng L L, Dai S M, Wang X, Tian C B, Zhan X X, Xie S Y, Huang R B and Zheng L S 2015 J. Mater. Chem. A 3 19353
[20] Chen W, Wu Y, Fan J, Djurišić A B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D and He Z B 2018 Adv. Energy Mater. 8 1703519
[21] Liu T, Chen K, Hu Q, Zhu R and Gong Q 2016 Adv. Energy Mater. 6 1600457
[22] Qiu Q, Mou J, Song J and Qiang Y 2020 J. Electron. Mater. 49 6300
[23] Liu H, Song J, Qin Y, Mou J, Qiu Q, Zhao Y, Zhu L and Qiang Y 2020 Vacuum 172 109077
[24] Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundström V and Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096
[25] Zhang J, Mao W, Hou X, Duan J, Zhou J, Huang S, Ou-Yang W, Zhang X, Sun Z and Chen X 2018 Solar Energy 174 1133
[26] Park M A, Park I J, Park S, Kim J, Jo W, Son H J and Kim J Y 2018 Curr. Appl. Phys. 18 S55
[27] Xie Y, Lu K, Duan J, Jiang Y, Hu L, Liu T, Zhou Y and Hu B 2018 ACS Appl. Mater. Interfaces 10 14153
[28] Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S and Park H J 2019 Adv. Sci. 6 1802163
[29] Zhang B, Su J, Guo X, Zhou L, Lin Z, Feng L, Zhang J, Chang J and Hao Y 2020 Adv. Sci. 7 1903044
[30] Qiu Q, Liu H, Qin Y, Ren C and Song J 2020 J. Mater. Sci. 55 13881
[31] Yang F, Wang C, Pan Y, Zhou X, Kong X and Ji W 2019 Chin. Phys. B 28 056402
[32] Wang S F, Shi L Y, Feng X and Ma S R 2007 Mater. Lett. 61 1549
[33] Zhu Z, Bai Y, Zhang T, Liu Z, Long X, Wei Z, Wang Z, Zhang L, Wang J and Yan F 2014 Angew. Chem. 126 12779
[34] Liu Y, Song J, Qin Y, Qiu Q, Zhao Y, Zhu L and Qiang Y 2019 J. Mater. Sci.:Mater. Electron. 30 15627
[35] Sui G, Li J, Du L, Zhuang Y, Zhang Y, Zou Y and Li B 2020 J. Alloys Compd. 823 153851
[36] Liu D, Li D and Yang D 2016 Cryst. Res. Technol. 51 313
[37] Song J, Zhao L, Huang S, Yan X, Qiu Q, Zhao Y, Zhu L, Qiang Y, Li H and Li G 2021 ChemSusChem 14 1396
[38] Zhao L, Sun X, Yao Q, Huang S, Zhu L, Song J, Zhao Y and Qiang Y 2022 Adv. Mater. Interfaces 9 2101562
[39] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I and Grätzel M 2015 Science 350 944
[40] Martin L, Martinez H, Poinot D, Pecquenard B and Le Cras F 2013 J. Phys. Chem. C 117 4421
[41] Zhang K H, Xi K, Blamire M G and Egdell R G 2016 J. Phys.:Condens. Matter 28 383002
[42] Gu Y F, Du H J, Li N N, Yang L and Zhou C Y 2019 Chin. Phys. B 28 048802
[43] Zheng J, Hu L, Yun J S, Zhang M, Lau C F J, Bing J, Deng X, Ma Q, Cho Y, Fu W, Chen C, Green M A, Huang S and Ho-Baillie A W Y 2018 ACS Appl. Energy Mater. 1 561
[44] Chen W Y, Deng L L, Dai S M, Wang X, Tian C B, Zhan X X, Xie S Y, Huang R B and Zheng L S 2015 J. Mater. Chem. A 3 19353
[45] Chandrasekhar P, Dubey A and Qiao Q 2020 Solar Energy 197 78
[46] Kanaya S, Kim G M, Ikegami M, Miyasaka T, Suzuki K, Miyazawa Y, Toyota H, Osonoe K, Yamamoto T and Hirose K 2019 J. Phys. Chem. Lett. 10 6990
[47] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J and Seo J 2018 Nat. Energy 3 682
[48] Lv Y, Cai B, Ma Q, Wang Z, Liu J J and Zhang W H 2018 RSC Adv. 8 20982
[49] Caprioglio P, Stolterfoht M, Wolff C M, Unold T, Rech B, Albrecht S and Neher D 2019 Adv. Energy Mater. 9 1901631
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[3] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[4] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[5] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[6] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[7] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[10] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[11] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[12] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[13] Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成). Chin. Phys. B, 2018, 27(1): 017305.
[14] Importance of ligands on TiO2 nanocrystals for perovskite solar cells
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(1): 018401.
[15] O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells
En-Dong Jia(贾恩东), Xi Lou(娄茜), Chun-Lan Zhou(周春兰), Wei-Chang Hao(郝维昌), Wen-Jing Wang(王文静). Chin. Phys. B, 2017, 26(6): 068803.
No Suggested Reading articles found!