INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer |
Qiaopeng Cui(崔翘鹏)1, Liang Zhao(赵亮)1, Xuewen Sun(孙学文)1, Qiannan Yao(姚倩楠)1, Sheng Huang(黄胜)1,†, Lei Zhu(朱磊)2, Yulong Zhao(赵宇龙)1, Jian Song(宋健)1,‡, and Yinghuai Qiang(强颖怀)1 |
1 The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; 2 Advanced Analysis&Computation Center, China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract Perovskite solar cells (PSCs) are the most promising commercial photoelectric conversion technology in the future. The planar p-i-n structure cells have advantages in negligible hysteresis, low temperature preparation and excellent stability. However, for inverted planar PSCs, the non-radiative recombination at the interface is an important reason that impedes the charge transfer and improvement of power conversion efficiency. Having a homogeneous, compact, and energy-level-matched charge transport layer is the key to reducing non-radiative recombination. In our study, NiO$_{x}$/Sr:NiO$_{x}$ bilayer hole transport layer (HTL) improves the holes transmission of NiO$_{x}$ based HTL, reduces the recombination in the interface between perovskite and HTL layer and improves the device performance. The bilayer HTL enhances the hole transfer by forming a driving force of an electric field and further improves $J_{\rm sc}$. As a result, the device has a power conversion efficiency of 18.44%, a short circuit current density of 22.81 mA$\cdot$cm$^{-2}$ and a fill factor of 0.80. Compared to the pristine PSCs, there are certain improvements of optical parameters. This method provides a new idea for the future design of novel hole transport layers and the development of high-performance solar cells.
|
Received: 16 July 2021
Revised: 18 August 2021
Accepted manuscript online: 22 August 2021
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
Fund: This work was supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2021QN1110). |
Corresponding Authors:
Sheng Huang, Jian Song
E-mail: huangsheng@cumt.edu.cn;jsoong@cumt.edu.cn
|
Cite this article:
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀) Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer 2022 Chin. Phys. B 31 038801
|
[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [2] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768 [3] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D and Yan C H 2019 Science 363 265 [4] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X and Han L 2019 Science 365 687 [5] Song J, Li S P, Zhao Y L, Yuan J, Zhu Y, Fang Y, Zhu L, Gu X Q and Qiang Y H 2017 J. Alloys Compd. 694 1232 [6] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M and Kim J Y 2021 Nature 592 381 [7] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476 [8] Yuan S, Liu Q W, Tian Q S, Jin Y, Wang Z K and Liao L S 2020 Adv. Funct. Mater. 30 1909222 [9] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 [10] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M 2014 Adv. Mater. 26 1584 [11] Yang Y, Song J, Zhao Y L, Zhu L, Gu X Q, Gu Y Q, Che M and Qiang Y H 2016 J. Alloys Compd. 684 84 [12] Xi J, Xi K, Sadhanala A, Zhang K H L, Li G, Dong H, Lei T, Yuan F, Ran C, Jiao B, Coxon P R, Harris C J, Hou X, Kumar R V and Wu Z 2019 Nano Energy 56 741 [13] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K and He Z B 2017 Adv. Energy Mater. 7 1700722 [14] Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B and He Z 2019 Adv. Energy Mater. 9 1803872 [15] Wu S, Zhang J, Li Z, Liu D, Qin M, Cheung S H, Lu X, Lei D, So S K, Zhu Z and Jen A K Y 2020 Joule 4 1248 [16] Song J, Yang Y, Zhao Y L, Che M, Zhu L, Gu X Q and Qiang Y H 2017 Mater. Sci. Engin. B 217 18 [17] Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K and Bolink H J 2014 Nat. Photon. 8 128 [18] Hou S, Shi B, Wang P, Li Y, Zhang J, Chen P, Chen B, Hou F, Huang Q, Ding Y, Li Y, Zhang D, Xu S, Zhao Y and Zhang X 2020 Chin. Phys. B 29 078801 [19] Chen W Y, Deng L L, Dai S M, Wang X, Tian C B, Zhan X X, Xie S Y, Huang R B and Zheng L S 2015 J. Mater. Chem. A 3 19353 [20] Chen W, Wu Y, Fan J, Djurišić A B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D and He Z B 2018 Adv. Energy Mater. 8 1703519 [21] Liu T, Chen K, Hu Q, Zhu R and Gong Q 2016 Adv. Energy Mater. 6 1600457 [22] Qiu Q, Mou J, Song J and Qiang Y 2020 J. Electron. Mater. 49 6300 [23] Liu H, Song J, Qin Y, Mou J, Qiu Q, Zhao Y, Zhu L and Qiang Y 2020 Vacuum 172 109077 [24] Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundström V and Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096 [25] Zhang J, Mao W, Hou X, Duan J, Zhou J, Huang S, Ou-Yang W, Zhang X, Sun Z and Chen X 2018 Solar Energy 174 1133 [26] Park M A, Park I J, Park S, Kim J, Jo W, Son H J and Kim J Y 2018 Curr. Appl. Phys. 18 S55 [27] Xie Y, Lu K, Duan J, Jiang Y, Hu L, Liu T, Zhou Y and Hu B 2018 ACS Appl. Mater. Interfaces 10 14153 [28] Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S and Park H J 2019 Adv. Sci. 6 1802163 [29] Zhang B, Su J, Guo X, Zhou L, Lin Z, Feng L, Zhang J, Chang J and Hao Y 2020 Adv. Sci. 7 1903044 [30] Qiu Q, Liu H, Qin Y, Ren C and Song J 2020 J. Mater. Sci. 55 13881 [31] Yang F, Wang C, Pan Y, Zhou X, Kong X and Ji W 2019 Chin. Phys. B 28 056402 [32] Wang S F, Shi L Y, Feng X and Ma S R 2007 Mater. Lett. 61 1549 [33] Zhu Z, Bai Y, Zhang T, Liu Z, Long X, Wei Z, Wang Z, Zhang L, Wang J and Yan F 2014 Angew. Chem. 126 12779 [34] Liu Y, Song J, Qin Y, Qiu Q, Zhao Y, Zhu L and Qiang Y 2019 J. Mater. Sci.:Mater. Electron. 30 15627 [35] Sui G, Li J, Du L, Zhuang Y, Zhang Y, Zou Y and Li B 2020 J. Alloys Compd. 823 153851 [36] Liu D, Li D and Yang D 2016 Cryst. Res. Technol. 51 313 [37] Song J, Zhao L, Huang S, Yan X, Qiu Q, Zhao Y, Zhu L, Qiang Y, Li H and Li G 2021 ChemSusChem 14 1396 [38] Zhao L, Sun X, Yao Q, Huang S, Zhu L, Song J, Zhao Y and Qiang Y 2022 Adv. Mater. Interfaces 9 2101562 [39] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I and Grätzel M 2015 Science 350 944 [40] Martin L, Martinez H, Poinot D, Pecquenard B and Le Cras F 2013 J. Phys. Chem. C 117 4421 [41] Zhang K H, Xi K, Blamire M G and Egdell R G 2016 J. Phys.:Condens. Matter 28 383002 [42] Gu Y F, Du H J, Li N N, Yang L and Zhou C Y 2019 Chin. Phys. B 28 048802 [43] Zheng J, Hu L, Yun J S, Zhang M, Lau C F J, Bing J, Deng X, Ma Q, Cho Y, Fu W, Chen C, Green M A, Huang S and Ho-Baillie A W Y 2018 ACS Appl. Energy Mater. 1 561 [44] Chen W Y, Deng L L, Dai S M, Wang X, Tian C B, Zhan X X, Xie S Y, Huang R B and Zheng L S 2015 J. Mater. Chem. A 3 19353 [45] Chandrasekhar P, Dubey A and Qiao Q 2020 Solar Energy 197 78 [46] Kanaya S, Kim G M, Ikegami M, Miyasaka T, Suzuki K, Miyazawa Y, Toyota H, Osonoe K, Yamamoto T and Hirose K 2019 J. Phys. Chem. Lett. 10 6990 [47] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J and Seo J 2018 Nat. Energy 3 682 [48] Lv Y, Cai B, Ma Q, Wang Z, Liu J J and Zhang W H 2018 RSC Adv. 8 20982 [49] Caprioglio P, Stolterfoht M, Wolff C M, Unold T, Rech B, Albrecht S and Neher D 2019 Adv. Energy Mater. 9 1901631 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|