Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038402    DOI: 10.1088/1674-1056/ac373a
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
TOPICAL REVIEW—Emerging photovoltaic materials and devices Prev   Next  

Applications and functions of rare-earth ions in perovskite solar cells

Limin Cang(苍利民)1, Zongyao Qian(钱宗耀)2, Jinpei Wang(王金培)2, Libao Chen(陈利豹)2, Zhigang Wan(万志刚)1, Ke Yang(杨柯)1, Hui Zhang(张辉)2,†, and Yonghua Chen(陈永华)2,‡
1 Research Center, Ancai Hi-Tech Co., Ltd., Anyang 455000, China;
2 Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, Nanjing 211800, China
Abstract  The emerging perovskite solar cells have been recognized as one of the most promising new-generation photovoltaic technologies owing to their potential of high efficiency and low production cost. However, the current perovskite solar cells suffer from some obstacles such as non-radiative charge recombination, mismatched absorption, light induced degradation for the further improvement of the power conversion efficiency and operational stability towards practical application. The rare-earth elements have been recently employed to effectively overcome these drawbacks according to their unique photophysical properties. Herein, the recent progress of the application of rare-earth ions and their functions in perovskite solar cells were systematically reviewed. As it was revealed that the rare-earth ions can be coupled with both charge transport metal oxides and photosensitive perovskites to regulate the thin film formation, and the rare-earth ions are embedded either substitutionally into the crystal lattices to adjust the optoelectronic properties and phase structure, or interstitially at grain boundaries and surface for effective defect passivation. In addition, the reversible oxidation and reduction potential of rare-earth ions can prevent the reduction and oxidation of the targeted materials. Moreover, owing to the presence of numerous energetic transition orbits, the rare-earth elements can convert low-energy infrared photons or high-energy ultraviolet photons into perovskite responsive visible light, to extend spectral response range and avoid high-energy light damage. Therefore, the incorporation of rare-earth elements into the perovskite solar cells have demonstrated promising potentials to simultaneously boost the device efficiency and stability.
Keywords:  perovskite      solar cells      rare-earth ions      power conversion efficiency  
Received:  29 August 2021      Revised:  19 October 2021      Accepted manuscript online:  06 November 2021
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.hj (Efficiency and performance of solar cells)  
  71.20.Eh (Rare earth metals and alloys)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2020YFA07099003), Six Talent Peaks Project of Jiangsu Province, China (Grant No. 2019-XNY-013), and a fellowship from the China Postdoctoral Science Foundation (Grant No. 2020M672181).
Corresponding Authors:  Hui Zhang, Yonghua Chen     E-mail:;

Cite this article: 

Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华) Applications and functions of rare-earth ions in perovskite solar cells 2022 Chin. Phys. B 31 038402

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2019 J. Am. Chem. Soc. 131 6050
[2] Wang J F, Lin D X and Yuan Y B 2019 Acta Phys. Sin. 68 158801 (in Chinese)
[3] Hou S, Shi B, Wang P, Li Y, Zhang J, Chen P, Chen B, Hou F, Huang Q, Ding Y, Li Y, Zhang D, Xu S, Zhao Y and Zhang X 2020 Chin. Phys. B 29 078801
[4] Xia J M, Liang C and Xing G C 2019 Acta Phys. Sin. 68 158807 (in Chinese)
[5] Liang Z, Yang B, Mei A, Lin S, Han H, Yuan Y, Xie H, Gao Y and Zhou C 2020 Chin. Phys. B 29 078401
[6] Yang J, Zhang P, Wang J and Wei S H 2020 Chin. Phys. B 29 108401
[7] Wang J M, Chen K, Xie W G, Shi T T, Liu P Y, Zheng Y F and Zhu R 2019 Acta Phys. Sin. 68 158806 (in Chinese)
[8] Hui W, Chao L F, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y and Huang W 2021 Science 371 1359
[9] Oregan B and Gratzel M 1991 Nature 353 737
[10] Kim S H, Lee C R,Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591
[11] accessed on April 1, 2021
[12] Zhang H and Toudert J 2018 Sci. Technol. Adv. Mat. 19 411
[13] Zhang H, Kramarenko M, Osmond J, Toudert J and Martorell J 2018 ACS Photonics 5 2243
[14] Wang J P, Zhang H, Wang L, Yang K, Cang L M, Liu X and Huang W 2020 ACS Appl. Energy Mater. 3 4484
[15] Peng J, Walter D, Ren Y, Tebyetekerwa M, Wu Y, Duong T, Lin Q, Li J, Lu T, Mahmud M A, Lem O L C, Zhao S, Liu W, Liu Y, Shen H, Li L, Kremer F, Nguyen H T, Choi D Y, Weber K J, Catchpole K R and White T P 2021 Science 371 390
[16] Frost J M, Butler K T, Brivio F, Hendon C H, Van Schilfgaarde M and Walsh A 2014 Nano Lett. 14 2584
[17] Yu Z and Sun L C 2015 Adv. Energy Mater. 5 1500213
[18] Li W Z, Li J W, Niu G D and Wang L D 2016 J. Mater. Chem. A 4 11688
[19] Li W Z, Zhang W, Van Reenen S, Sutton R J, Fan J D, Haghighirad A A, Johnston M B, Wang L D and Snaith H J 2016 Energy Environ. Sci. 9 490
[20] Lv Y F, Zhang H, Liu R Q, Sun Y N and Huang W 2020 ACS Appl. Mater. Interfaces 12 27277
[21] Lv Y F, Xu P H, Ren G Q, Chen F, Nan H R, Liu R Q, Wang D, Tan X, Liu X Y, Zhang H and Chen Z K 2018 ACS Appl. Mater. Interfaces 10 23928
[22] Lluscá N, Lopez-Vidrier J, Lauzurica S, Sanchez-Aniorte M I, Antony A, Molpeceres C, Hernández S, Garrido B and Bertomeu J 2015 J. Lumin. 167 101
[23] Huang X Y, Han S Y, Huang W and Liu X G 2013 Chem. Soc. Rev. 42 173
[24] Wang H Q, Batentschuk M, Osvet A,Pinna L and Brabec C J 2011 Adv. Mater. 23 2675
[25] Tyler G 2004 Plant Soil 267 191
[26] Chen X, Wang W J, Chen X Y, Bi J H, Wu L, Li Z H and Fu X Z 2009 Mater. Lett. 63 1023
[27] Grosjean N, Le Jean M, Berthelot C, Chalot M, Gross E M and Blaudez D 2019 Sci. Rep. 9 18458
[28] Kolesnikov I E, Kalinichev A A, Kurochkin M A, Golyeva E V, Terentyeva A S, Kolesnikov E Y and Lahderanta E 2019 Sci. Rep. 9 2043
[29] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[30] Auzel F 2004 Chem. Rev. 104 139
[31] Wang F and Liu X G 2009 Chem. Soc. Rev. 38 976
[32] Hou X, Xuan T T, Sun H C, Chen X H, Li H L and Pan L K 2016 Sol. Energy Mater. Sol. Cells 149 121
[33] Auzel F 2005 Spectrosc. Prop. Rare Earths Opt. Mater. 83 266
[34] Chen Y H, Liu S C, Zhou N, Li N X, Zhou H P, Sun L D and Yan C H 2021 Prog. Mater. Sci. 120 100737
[35] Qiao Y, Li S H, Liu W H, Ran M Q, Lu H F and Yang Y P 2018 Nanomater. 8 43
[36] Ma X H, Yang L Q, Lei K X, Zheng S J, Chen C and Song H W 2020 Nano Energy 78 105354
[37] Guo Q Y, Wu J H, Yang Y Q, Liu X P, Jia J B, Dong J, Lan Z, Lin J M, Huang M L, Wei Y L and Huang Y F 2019 J. Power Sources 426 178
[38] Yoo J J, Seo G, Chua M R, Park T G, Lu Y L, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa Baena J P, Bulovic V, Shin S S, Bawendi M G and Seo J 2021 Nature 590 7847
[39] Qian Z Y, Chen L B, Wang J P, Wang L, Xia Y D, Ran X Q, Li P, Zhong Q, Song L, Muller Buschbaum P, Chen Y H and Zhang H 2021 Adv. Mater. Interfaces 8 2100128
[40] Chen X B and Mao S S 2007 Chem. Rev. 107 2891
[41] Pathak S K, Abate A, Ruckdeschel P, Roose B, Gödel K C, Vaynzof Y, Santhala A, Watanabe S I, Hollman D J, Noel N, Sepe A, Wiesner U, Friend R, Snaith H J and Steiner U 2014 Adv. Funct. Mater. 24 6046
[42] Roose B, Godel K C, Pathak S, Sadhanala A, Baena J P C, Wilts B D, Snaith H J, Wiesner U, Gratzel M, Steiner U and Abate A 2016 Adv. Energy Mater. 6 1501868
[43] Gao X X, Ge G G, Xue D J, Ding J, Ma J Y, Chen Y X, Zhang B, Feng Y Q, Wan L J and Hu J S 2016 Nanoscale 8 16881
[44] Xiang Y, Ma Z, Zhuang J, Lu H L, Jia C Y, Luo J S, Li H M and Cheng X W 2017 J. Phys. Chem. C 121 20150
[45] Xu Z, Wu J H, Wu T Y, Bao Q L, He X, Lan Z, Lin J M, Huang M L, Huang Y F and Fan L Q 2017 Energy Technol. 5 1820
[46] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S and Yang Y 2014 Science 345 542
[47] Qin P D, Domanski A L, Chandiran A K, Berger R, Butt H J, Dar M I, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin M K and Grätzel M 2014 Nanoscale 6 1508
[48] Chen X F, Xu L, Chen C, Wu Y J, Bi W B, Song Z L, Zhuang X M, Yang S, Zhu S D and Song H W 2019 J. Power Sources 444 227267
[49] Jiang Q, Zhang X W and You J B 2018 Small 14 1801154
[50] Song J, Zhang W N, Wang D, Deng K M, Wu J H and Lan Z 2019 Sol. Energy 185 508
[51] Liu X, Zhang Y F, Shi, Liu Z H, Huang J F, Yun J S, Zeng Y Y, Pu A B, Sun K W, Hameiri Z, Stride J A, Seidel J, Green M A and Hao X 2018 Adv. Energy Mater. 8 1800138
[52] Anaraki E H, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren Cruz S H, Seo J, Luo J, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A and Correa Baena J P 2018 ACS Energy Lett. 3 773
[53] Ren X D, Yang D, Yang Z, Feng J S, Zhu X J, Niu J Z, Liu Y Z, Zhao W G and Liu S F 2017 ACS Appl. Mater. Interfaces 9 2421
[54] Chen J Z, Yang H B, Tao H B, Zhang L P, Miao J W, Wang H Y, Chen J Z, Zhang H and Liu B 2016 Adv. Funct. Mater. 26 456
[55] Gao Y Y, Zhu J, An H Y, Yan P L, Huang B K, Chen, R T, Fan F T and Li C 2017 J. Phys. Chem. Lett. 8 1419
[56] Ren Z Q, Wu J D, Wang N and Li X 2018 J. Mater. Chem. A 6 15348
[57] Park J H, Seo J, Park S, Shin S S, Kim Y C, Jeon N J, Shin H W, Ahn T K, Noh J H, Yoon S C, Hwang C S and Seok S I 2015 Adv. Mater. 27 4013
[58] Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F and Yang S H 2014 Angew. Chem. 53 12571
[59] You J B, Meng L, Song T B, Guo T F, Yang Y, Chang W H, Hong Z R, Chen H J, Zhou H P, Chen Q, Liu Y S and De Marco N 2016 Nat. Nanotechnol. 11 75
[60] Zhang K H L, Xi K, Blamire M G and Egdell R G 2016 J. Phys.:Condens. Matter 28 383002
[61] Zhang W B, Yu N, Yu W Y and Tang B Y 2008 Eur. Phys. J. B 64 153
[62] Bai Y, Chen H N, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L and Yang S 2016 Adv. Funct. Mater. 26 2950
[63] Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Gratzel M and Han L Y 2015 Science 350 944
[64] Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S and Ma T L 2019 ChemSusChem 12 518
[65] Lin J and Yun J C 1998 J. Photochem. Photobiol. A 116 63
[66] Xu A W, Gao Y and Liu H Q 2002 J. Catal. 207 151
[67] Abu Zied B M, Bawaked S M, Kosa S A and Schwieger W 2016 Catalysts 6 70
[68] Hu Z J, Chen D, Yang P, Yang L J, Qin L H, Huang Y H and Zhao X C 2018 Appl. Surf. Sci. 441 258
[69] Xu Y N, Gu Z Q and Ching W Y 1997 Phys. Rev. B 56 14993
[70] Zhao B X, Wang, J S, Li H Y, Wang H, Jia X J and Su P L 2015 Phys. Chem. Chem. Phys. 17 14836
[71] Xu Z H, Teo S H, Gao L G, Guo Z L, Kamata Y, Hayase S and Ma T L 2019 Org. Electron. 73 62
[72] Yang G, Lei H W, Tao H, Zheng X L, Ma J J, Liu Q, Ke W J, Chen Z L, Xiong L B, Qin P L, Chen Z, Qin M C, Lu X H, Yan Y F and Fang G J 2017 Small 13 1601769
[73] Liu B and Aydil E S 2009 J. Am. Chem. Soc. 131 3985
[74] Guo Q Y, Wu J H, Yang Y Q, Liu X P, Lan Z, Lin J M, Huang M L, Wei Y L, Dong J, Jia J B and Huang Y F 2019 Research 2019 4049793
[75] Wu X W, Li H W, Wang K, Sun X W and Wang L D 2018 RSC Adv. 8 11095
[76] Pan G C, Bai X, Yang D W, Chen X, Jing P T, Qu S N, Zhang L J, Zhou D L, Zhu J Y, Xu W, Dong B and Song H W 2017 Nano Lett. 17 8005
[77] Suzuki A and Oku T 2021 Mater. Adv. 2 2609
[78] Yin J, Ahmed G H, Bakr O M, Bredas J L and Mohammed O F 2019 Acs Energy Lett. 4 789
[79] Li X Y, Duan S, Liu H C, Chen G Y, Luo Y and Agren H 2019 J. Phys. Chem. Lett. 10 487
[80] Xiang W C, Wang Z W, Kubicki D J, Tress W, Luo J S, Prochowicz D, Akin S, Emsley L, Zhou J T, Dietler G, Gratzel M and Hagfeldt A 2019 Joule 3 205
[81] Yang S M, Zhao H, Han Y, Duan C Y, Liu L K and Liu S Z 2019 Small 15 e1904387
[82] Chen L B, Wu W, Wang J P, Qian Z Y, Liu R G, Niu Y Y, Chen Y H, Xie X J and Zhang H 2021 ACS Appl. Energy Mater. 4 3937
[83] Xiang W C, Wang Z W, Kubicki D J, Tress W, Luo J S, Prochowicz D, Akin S, Emsley L, Zhou J T, Dietler G, Gratzel M and Hagfeldt A 2019 Joule 3 205
[84] Duan J L, Zhao Y, Yang X Y, Wang Y D, He B L and Tang Q W 2018 Adv. Energy Mater. 8 1802346
[85] Eperon G E, Paternó G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688
[86] Wang J P, Chen L B, Qian Z Y, Ren G Q, Wu J and Zhang H 2020 J. Mater. Chem. A 8 25336
[87] Jena A K, Kulkarni A, Sanehira Y, Ikegami M and Miyasaka T 2018 Chem. Mater. 30 6668
[88] Chen S L, Zhang T J, Liu X L, Qiao J L, Peng L, Wang J, Liu Y S, Yang T Y and Lin J 2020 J. Mater. Chem. C 8 3351
[89] Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng G H J, Huang Y, Chen Y H, Li L, Xu Z Q, Li N X, Liu Z, Chen Q, Sun L D and Yan C H 2019 Science 363 265
[90] Feng X X, Chen R H, Nan Z A, Lv X D, Meng R Q, Cao J and Tang Y 2019 Adv. Sci. 6 1802040
[91] Gao K, Zhu Z L, Xu B, Jo S B, Kan Y Y, Peng X B and Jen A K 2017 Adv. Mater. 29 1703980
[92] Cao J, Lv X D, Zhang P, Chuong T T, Wu B H, Feng X X, Shan C F, Liu J C and Tang Y 2018 Adv. Mater. 30 1800568
[93] Xia H Q, Wang J, Jia R, Wang Q and Zhang H X 2015 Chem. Res. Chin. Univ. 31 276
[94] Dou J, Zhu C, Wang H, Han Y, Ma S, Niu X X, Li N X, Shi C B, Qiu Z W, Zhou H P, Bai Y and Chen Q 2021 Adv. Mater. 33 2102947
[95] Yang Y, Han D W, Yang Y, Yi S W, Yuan Q, Zhou D Y and Feng L 2020 APL Mater. 8 071102
[96] He M, Pang X C, Liu X Q, Jiang B B, He Y J, Snaith H J and Lin Z Q 2016 Angew. Chem. 55 4280
[97] Liang J W, Gao H P, Yi M J, Shi W J, Liu Y F, Zhang Z L and Mao Y L 2017 Electrochim. Acta 261 14
[98] Zhang H, Zhang Q S, Lv Y Q, Yang C, Chen H H and Zhou X F 2018 Mater. Res. Bull. 106 346
[99] Wang X L, Zhang Z L, Qin J Q, Shi W J, Liu Y F, Gao H P and Mao Y L 2017 Electrochim. Acta 245 839
[100] Cao B S, He Y Y, Sun Y, Song M and Dong B 2011 J. Nanosci. Nanotechnol. 11 9899
[101] He Y Y, Wu J L, Wang X H, Feng Z Q and Dong B 2016 J. Nanosci. Nanotechnol. 16 3768
[102] Zhang Z L, Li D N, Shi W J, Liu Y Y, Zhang Y, Liu Y F, Gao H P and Mao Y L 2018 Nanoscale Res. Lett. 13 262
[103] Zhang Z L, Qin J Q, Shi W J, Liu Y Y, Zhang Y, Liu Y F, Gao H P and Mao Y L 2018 Nanoscale Res. Lett. 13 147
[104] Green M A and Bremner S P 2016 Nat. Mater. 16 23
[105] Trupke T, Green M A and Wurfel P 2002 J. Appl. Phys. 92 1668
[106] Wang G F, Peng Q and Li Y D 2011 Acc. Chem. Res. 44 322
[107] Dong A G, Ye X C, Chen J, Kang, Y J, Gordon T, Kikkawa J M and Murray C B 2011 J. Am. Chem. Soc. 133 998
[108] Shin J, Kim Y, Lee J, Kim S and Jang H S 2017 Part. Part. Syst. Charact. 34 1600183
[109] Que M D, Que W H, Yin X G, Chen P, Yang Y W, Hu J X, Yu B Y and Du Y P 2016 Nanoscale 8 14432
[110] Roh J, Yun H and Jang J 2016 ACS Appl. Mater. Interfaces 8 19847
[111] Deng X H, Zhang C X, Zheng J F, Zhou X, Yu M D, Chen X H and Huang S M 2019 Appl. Surf. Sci. 485 332
[112] Meng F L, Wu J J, Zhao E F, Zheng Y Z, Huang M L, Dai L M, Tao X and Chen J F 2017 Nanoscale 9 18535
[113] Rajeswari R, Susmitha K, Jayasankar C K, Raghavender M and Giribabu L 2017 Sol. Energy 157 956
[114] Qiu L, Yang Y, Dong G H, Xia D B, Li M R, Fan X and Fan R Q 2018 Appl. Surf. Sci. 448 145
[115] Wu Y H, Ding X H, Shi X Q, Hayat T, Alsaedi A, Ding Y, Mo L E and Dai S Y 2018 ACS Sustainable Chem. Eng. 6 14004
[116] Qi F, Xiao Y Q, Yu Z H, Liu P, Kong S, Li F J, Zhang H J, Wang Y and Zhao X Z 2019 Org. Electron. 73 152
[117] Chen X, Xu W, Song H W, Chen C, Xia H P, Zhu Y S, Zhou D L, Cui S B, Dai Q L and Zhang J Z 2016 ACS Appl. Mater. Interfaces 8 9071
[118] Lai X S, Li X T, Lv X D, Zheng Y Z, Meng F L and Tao X 2017 J. Power Sources 372 125
[119] Ferreira R A S, Correia S F H, Monguzzi A, Liu X G and Meinardi F 2020 Mater Today 33 105
[120] Chen S F, Peng B, Lu F, Mei Y, Cheng F, Deng L L, Xiong Q H, Wang L H, Sun X W and Huang W 2014 Adv. Opt. Mater. 2 442
[121] Liang L L, Liu Y M, Bu C H, Guo K M, Sun W W, Huang N, Peng T, Sebo B, Pan M M, Liu W, Guo S S and Zhao X Z 2013 Adv. Mater. 25 2174
[122] Ding Y L, Qiao H Z, Yang T H, Yin N Q, Li P, Zhao Y and Zhang X D 2017 Opt. Mater. 73 617
[123] Yao H H, Peng G Q, Li Z Z, Zhu G, Li W Q, Ci Z P, Lan W, Jia H, Dong B and Jin Z W 2022 J. Energy Chem. 65 524
[124] Qiao Y, Li S H, Liu W H, Ran M Q, Lu H F and Yang Y P 2018 Nanomater 8 43
[125] Chen W H, Luo Q, Zhang C X, Shi J H, Deng X H, Yue L Y, Wang Z B, Chen X H and Huang S M 2017 J. Mater. Sci.:Mater. Electron. 28 11346
[126] Rahman N U, Khan W U, Khan S, Chen X J, Khan J, Zhao J, Yang Z Y, Wu M M and Chi Z G 2019 J. Mater. Chem. A 7 6467
[127] Jiang L, Chen W C, Zheng J W, Zhu L Z, Mo L, Li Z Q, Hu L H, Hayat T, Alsaedi A, Zhang C N and Dai S Y 2017 ACS Appl. Mater. Interfaces 9 26958
[128] Jiang L, Zheng J W, Chen W C, Huang Y, Hu L H, Hayat T, Alsaedi A, Zhang C G and Dai S Y 2017 ACS Appl. Energy Mater. 1 93
[129] Meng R Q, Feng X X, Yang Y W, Lv X D, Cao J and Tang Y 2019 ACS Appl. Mater. Interfaces 11 13273
[130] Zhang B X, Song Z L, Jin J J, Bi W B, Li H, Chen C, Dai Q L, Xu L and Song H W 2019 J. Colloid Interface Sci. 553 14
[131] Zheng H Y, Liu G Z, Zhu L Z, Ye J J, Zhang X H, Alsaedi A, Hayat T, Pan X and Dai S Y 2017 ACS Appl. Mater. Interfaces 9 41006
[132] Bi W B, Wu Y J, Zhang B X, Jin J J, Li H, Liu L, Xu L, Dai Q L, Chen C and Song H W 2019 ACS Appl. Mater. Interfaces 11 11481
[133] Hafez H,Wu J H, Lan Z, Li Q H, Xie G X, Lin J M, Huang M L and Huang Y F 2010 Nanotechnology 21 415201
[134] Chander N, Khan A, Chandrasekhar P S, Thouti E, Swami S K, Dutta V and Komarala V K 2014 Appl. Phys. Lett. 105 033904
[135] Jia J B, Dong J, Lin J M, Lan Z, Fan L Q and Wu J H 2019 J. Mater. Chem. C 7 937
[136] Song P, Zhu P F and Zhang C M 2018 J. Alloys Compd. 731 1009
[137] Li H, Chen C, Jin J J, Bi W B, Zhang B X, Chen X, Xu L, Liu D L, Dai Q L and Song H W 2018 Nano Energy 50 699
[138] Zheng J F. Deng X S, Zhou X, Yu M D, Xia Z T, Chen X H and Huang S M 2019 J. Mater. Sci.:Mater. Electron. 30 11043
[139] Liang L L, Liu Y M and Zhao X Z 2013 Chem. Commun. 49 3958
[140] Wang Z, Quan Z and Lin J 2007 Inorg. Chem. 46 5237
[141] Moon B, Kim S J, Lee S, Lee A, Lee H, Lee D S, Kim T W, Lee S K, Bae S and Lee S H 2019 Adv. Mater. 31 1901716
[142] Alam F, Wegner K D, Pouget S, Amidani L, Kvashnina K, Aldakov D and Reiss P 2019 J. Chem. Phys. 151 231101
[143] Huang J M, Lei T, Siron M, Zhang Y, Yu S, Seeler F, Dehestani A, Quan L N, Schierle Arndt K and Yang P D 2020 Nano Lett. 20 3734
[144] Mitzi D B and Liang K N 1997 Chem. Mater. 9 2990
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[3] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[4] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[5] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[8] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[9] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[10] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[13] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[14] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[15] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
No Suggested Reading articles found!