Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118801    DOI: 10.1088/1674-1056/ac67c5
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
SPECIAL TOPIC—Emerging photovoltaic materials and devices Prev   Next  

Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells

Zheng Fang(方正)1,2,†, Liu Yang(杨柳)2,†, Yongbin Jin(靳永斌)2,†, Kaikai Liu(刘凯凯)2, Huiping Feng(酆辉平)2, Bingru Deng(邓冰如)2, Lingfang Zheng(郑玲芳)2, Changcai Cui(崔长彩)1, Chengbo Tian(田成波)2, Liqiang Xie(谢立强)2,‡, Xipeng Xu(徐西鹏)1,§, and Zhanhua Wei(魏展画)2,¶
1 MOE Engineering Research Center for Brittle Materials Machining, Institute of Manufacturing Engineering, College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China;
2 Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  SnO2 is widely used as the electron transport layer (ETL) in perovskite solar cells (PSCs) due to its excellent electron mobility, low processing temperature, and low cost. And the most common way of preparing the SnO2 ETL is spin-coating using the corresponding colloid solution. However, the spin-coated SnO2 layer is sometimes not so compact and contains pinholes, weakening the hole blocking capability. Here, a SnO2 thin film prepared through magnetron-sputtering was inserted between ITO and the spin-coated SnO2 acted as an interlayer. This strategy can combine the advantages of efficient electron extraction and hole blocking due to the high compactness of the sputtered film and the excellent electronic property of the spin-coated SnO2. Therefore, the recombination of photo-generated carriers at the interface is significantly reduced. As a result, the semitransparent perovskite solar cells (with a bandgap of 1.73 eV) based on this double-layered SnO2 demonstrate a maximum efficiency of 17.7% (stabilized at 17.04%) with negligible hysteresis. Moreover, the shelf stability of the device is also significantly improved, maintaining 95% of the initial efficiency after 800-hours of aging.
Keywords:  semitransparent perovskite solar cells      sputtering      interlayer      hole blocking  
Received:  04 March 2022      Revised:  13 April 2022      Accepted manuscript online:  18 April 2022
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 22179042, U21A2078, and 51902110), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2020J06021, 2019J01057, and 2020J01064), Scientific Research Funds of Huaqiao University, and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant Nos. ZQN-PY607 and ZQN-806).
Corresponding Authors:  Liqiang Xie, Xipeng Xu, Zhanhua Wei     E-mail:;;

Cite this article: 

Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画) Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells 2022 Chin. Phys. B 31 118801

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[3] Yang Woon S, Noh Jun H, Jeon Nam J, Kim Young C, Ryu S, Seo J and Seok Sang I 2015 Science 348 1234
[4] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Grätzel M 2016 Energy Environ. Sci. 9 1989
[5] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
[6] Kim G, Min H, Lee Kyoung S, Lee Do Y, Yoon So M and Seok Sang I 2020 Science 370 108
[7] Min H, Lee D Y, Kim J, Kim G, Lee K S, Kim J, Paik M J, Kim Y K, Kim K S, Kim M G, Shin T J and Il Seok S 2021 Nature 598 444
[8] National Renewable Energy Laboratory 2021 Research Cell Efficiency Records (accessed March 20, 2021)
[9] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X and You J 2016 Nat. Energy 2 16177
[10] Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y B and Huang F 2018 Nat. Commun. 9 4609
[11] Jeong J, Kim M, Seo J, et al. 2021 Nature 592 381
[12] Wei J, Guo F, Wang X, Xu K, Lei M, Liang Y, Zhao Y and Xu D 2018 Adv. Mater. 30 1805153
[13] Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M and Hagfeldt A 2015 Energy Environ. Sci. 8 2928
[14] Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S and Liu S 2018 Nat. Commun. 9 3239
[15] Xi J, Wu Z, Jiao B, Dong H, Ran C, Piao C, Lei T, Song T B, Ke W, Yokoyama T, Hou X and Kanatzidis M G 2017 Adv. Mater. 29 1606964
[16] Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y B and Huang F 2018 Nat. Commun. 9 4609
[17] Zhu M, Liu W, Ke W, Xie L, Dong P and Hao F 2019 ACS Appl. Mater. Interfaces 11 666
[18] Zhang M, Wu F, Chi D, Shi K and Huang S 2020 Mater. Adv. 1 617
[19] Chen J Y, Chueh C C, Zhu Z, Chen W C and Jen A K Y 2017 Sol. Energy Mater. Sol. Cells 164 47
[20] Qiu L, Liu Z, Ono L K, Jiang Y, Son D Y, Hawash Z, He S and Qi Y 2019 Adv. Functi. Mater. 29 1806779
[21] Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulovi? V, Shin S S, Bawendi M G and Seo J 2021 Nature 590 587
[22] Raiford J A, Boyd C C, Palmstrom A F, Wolf E J, Fearon B A, Berry J J, McGehee M D and Bent S F 2019 Adv. Energy Mater. 9 1902353
[23] Zhao Y, Deng Q, Guo R, Wu Z, Li Y, Duan Y, Shen Y, Zhang W and Shao G 2020 ACS Appl. Mater. Interfaces 12 54904
[24] Bai G, Wu Z, Li J, Bu T, Li W, Li W, Huang F, Zhang Q, Cheng Y B and Zhong J 2019 Sol. Energy 183 306
[25] Lee Y, Lee S, Seo G, Paek S, Cho K T, Huckaba A J, Calizzi M, Choi D W, Park J S, Lee D, Lee H J, Asiri A M and Nazeeruddin M K 2018 Adv. Sci. 5 1800130
[26] Jeong S, Seo S, Park H and Shin H 2019 Chem. Commun. 55 2433
[27] Dagar J, Castro H S, Gasbarri M, Palma A L, Cina L, Matteocci F, Calabr E, Di C A and Brown T M 2018 Nano Research 11 2669
[28] Wu W Q, Chen D, Cheng Y B and Caruso R A 2017 Solar RRL 1 1700117
[29] Ke W, Zhao D, Xiao C, Wang C, Cimaroli A J, Grice C R, Yang M, Li Z, Jiang C S, Al-Jassim M, Zhu K, Kanatzidis M G, Fang G and Yan Y 2016 J. Mater. Chem. A 4 14276
[30] Noh Y W, Jin I S, Kim K S, Park S H and Jung J W 2020 J. Mater. Chem. A 8 17163
[31] Song P, Shen L, Zheng L, Liu K, Tian W, Chen J, Luo Y, Tian C, Xie L and Wei Z 2021 Nano Select. 2 1779
[32] Xie L, Lin K, Lu J, Feng W, Song P, Yan C, Liu K, Shen L, Tian C and Wei Z 2019 J. Am. Chem. Soc. 141 20537
[33] Wang W G, Bai T, Xue G F and Ye M D 2021 J. Electrochem. 27 216
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[4] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[5] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[6] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[7] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[8] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[9] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[10] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[11] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[12] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[13] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[14] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[15] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
No Suggested Reading articles found!