Special Issue:
SPECIAL TOPIC — New generation solar cells
|
SPECIAL TOPIC—New generation solar cells |
Prev
Next
|
|
|
Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films |
Biao Shi(石标)1,2,3,4, Sheng Guo(郭升)1,2,3,4, Changchun Wei(魏长春)1,2,3,4, Baozhang Li(李宝璋)1,2,3,4, Yi Ding(丁毅)1,2,3,4, Yuelong Li(李跃龙)1,2,3,4, Qing Wan(万青)5, Ying Zhao(赵颖)1,2,3,4, Xiaodan Zhang(张晓丹)1,2,3,4 |
1 Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China; 2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300071, China; 3 Key Laboratory of Optical Information Science and Technology of Ministry of Education, Tianjin 300071, China; 4 Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China; 5 College of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China |
|
|
Abstract A star hybrid inorganic-organic perovskite material selected as an outstanding absorbing layer in solar cells benefits from multiple preparation techniques and excellent photoelectric characteristics. Among numerous synthetic processes, uniform, compact, and multi-stack perovskite thin films can be manufactured using vacuum deposition. During sequential vacuum deposition, the penetration ability of the organic molecules cannot be effectively controlled. In addition, the relationship between the thickness of the inorganic seeding layer and the organic molecule concentration for optimized devices using an evaporation-solution method is unclear. In this work, we prepared high-quality perovskite films by effectively controlling the penetration ability and chemical quantity of organic methyl ammonium iodide by monitoring the evaporation pressure and time. Thus, a device efficiency of over 15% was achieved with an all-vacuum prepared perovskite film. For the evaporation-solution method, we reacted different thicknesses of inorganic lead iodine with various concentrations of the organic molecule solution. The inorganic layer thickness and organic molecule concentration showed a linear relationship to achieve an optimum perovskite film, and an empirical formula was obtained. This work noted the key parameters of two intercalation reactions to prepare perovskite films, which paves a way to deliver a device that enables multi-layered structures, such as tandem solar cells.
|
Received: 06 October 2017
Revised: 24 November 2017
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
88.40.fh
|
(Advanced materials development)
|
|
91.60.Ed
|
(Crystal structure and defects, microstructure)
|
|
Fund: Project supported by the International Cooperation Project of the Ministry of Science and Technology, China (Grant No. 2014DFE60170), the National Natural Science Foundation of China (Grant Nos. 61474065 and 61674084), Tianjin Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the 111 Project, China (Grant No. B16027). |
Corresponding Authors:
Xiaodan Zhang
E-mail: xdzhang@nankai.edu.cn
|
Cite this article:
Biao Shi(石标), Sheng Guo(郭升), Changchun Wei(魏长春), Baozhang Li(李宝璋), Yi Ding(丁毅), Yuelong Li(李跃龙), Qing Wan(万青), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹) Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films 2018 Chin. Phys. B 27 018807
|
[1] |
Ponseca Jr C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J and Sundström V 2014 J. Am. Chem. Soc. 136 5189
|
[2] |
Stranks S, Eperon G, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L, Petrozza A and Snaith H J 2013 Science 342 341
|
[3] |
Gao P, Grätzel M and Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448
|
[4] |
Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506
|
[5] |
Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M and Hagfeldt A 2015 Energy Environ. Sci. 8 2928
|
[6] |
Jesper Jacobsson T, Correa-Baena J P, Pazoki M, Saliba M, Schenk K, Grätzel M and Hagfeldt A 2016 Energy Environ. Sci. 9 1706
|
[7] |
Yang Z, Rajagopal A, Chueh C C, Jo S B, Liu B, Zhao T and Jen A K 2016 Adv. Mater. 28 8990
|
[8] |
Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D and Snaith H J 2016 Science 354 861
|
[9] |
Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903
|
[10] |
Kim J, Lee S H, Lee J H and Hong K H 2014 J. Phys. Chem. Lett. 5 1312
|
[11] |
Sutherland B R, Hoogland S, Adachi M M, Kanjanaboos P, Wong C T, McDowell J J, Xu J, Voznyy O, Ning Z, Houtepen A J and Sargent E H 2015 Adv. Mater. 27 53
|
[12] |
Malinkiewicz O, Lenes M, Brine H and Bolink H J 2012 RSC Adv. 2 3335
|
[13] |
Ono L K, Wang S, Kato Y, Raga S R and Qi Y 2014 Energy Environ. Sci. 7 3989
|
[14] |
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316
|
[15] |
Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
|
[16] |
Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G and Yang Y 2013 J. Am. Chem. Soc. 136 622
|
[17] |
Das S, Yang B, Gu G, Joshi P C, Ivanov I N, Rouleau C M, Aytug T, Geohegan D B and Xiao K 2015 ACS Photonics 2 680
|
[18] |
Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y and Huang J 2014 Energy Environ. Sci. 7 2619
|
[19] |
Chen B, Bai Y, Yu Z, Li T, Zheng X, Dong Q, Shen L, Boccard M, Gruverman A, Holman Z and Huang J 2016 Adv. Energy Mater. 6 1601128
|
[20] |
Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y, Su S, Yip H and Cao Y 2017 Adv. Mater. 29 1603157
|
[21] |
Wang J, Wang N, Jin Y, Si J, Tan Z, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H and Huang W 2015 Adv. Mater. 27 2311
|
[22] |
Wu Y, Li J, Xu J Du Y, Huang L, Ni J, Cai H and Zhang J 2016 RSC Adv. 6 16243
|
[23] |
Lu H, Tian W, Cao F, Ma Y, Gu B and Li L 2016 Adv. Funct. Mater. 26 1296
|
[24] |
Shen L, Fang Y, Wang D, Bai Y, Deng Y, Wang M and Huang J 2016 Adv. Mater. 28 10794
|
[25] |
Bi D, Yi C, Luo J, Décoppet J, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A and Grätzel M 2016 Nat. Energy 1 16142
|
[26] |
Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E and Kymakis E 2017 Adv. Energy Mater. 7 1602120
|
[27] |
Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J and Kanatzidis M G 2016 Nature 536 312
|
[28] |
You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N and Yang Y 2016 Nat. Nanotech. 11 75
|
[29] |
Lin Q, Armin A, Nagiri R C R, Burn P L and Meredith P 2014 Nat. Photon. 9 106
|
[30] |
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U and Seok S I 2017 Science 356 1376
|
[31] |
Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K and Bolink H J 2013 Nat. Photon. 8 128
|
[32] |
Malinkiewicz O, Roldán-Carmona C, Soriano A, Bandiello E, Camacho L, Nazeeruddin M K and Bolink H J 2014 Adv. Energy Mater. 4
|
[33] |
Teuscher J, Ulianov A, Muntener O, Gratzel M and Tetreault N 2015 ChemSusChem 8 3847
|
[34] |
Gao C, Liu J, Liao C, Ye Q, Zhang Y, He X, Guo X, Mei J and Lau W 2015 RSC Adv. 5 26175
|
[35] |
Zhou H, Chen Q and Yang Y 2015 MRS Bull. 40 667
|
[36] |
Mao J, Zhang H, He H, Lu H, Xie F, Zhang D, Wong K S and Choy W C H 2015 RSC Adv. 5 73760
|
[37] |
Chen C W, Kang H W, Hsiao S Y, Yang P F, Chiang K M and Lin H W 2014 Adv. Mater. 26 6647
|
[38] |
Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P and Cui G 2014 RSC Adv. 4 28964
|
[39] |
Bailie C D, Christoforo M G, Mailoa J P, Bowring A R, Unger E L, Nguyen W H, Burschka J, Pellet N, Lee J Z, Grätzel M, Noufi R, Buonassisi T, Salleo A and McGehee M D 2015 Energy Environ. Sci. 8 956
|
[40] |
Fu F, Feurer T, Jager T, Avancini E, Bissig B, Yoon S, Buecheler S and Tiwari A N 2015 Nat. Commun. 6
|
[41] |
Fu F, Feurer T, Weiss Thomas P, Pisoni S, Avancini E, Andres C, Buecheler S and Tiwari Ayodhya N 2016 Nat. Energy 2 16190
|
[42] |
Werner J, Weng C-H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B and Ballif C 2015 J. Phys. Chem. Lett. 7 161
|
[43] |
Tao C, Neutzner S, Colella L, Marras S, Srimath Kandada A R, Gandini M, Bastiani M D, Pace G, Manna L, Caironi M, Bertarelli C and Petrozza A 2015 Energy Environ. Sci. 8 2365
|
[44] |
Ioakeimidis A, Christodoulou C, Lux-Steiner M and Fostiropoulos K 2016 J. Solid State Chem. 244 20
|
[45] |
Liu D, Gangishetty M K and Kelly T L 2014 J. Mater. Chem. A 2 19873
|
[46] |
Leyden M R, Ono L K, Raga S R, Kato Y, Wang S and Qi Y 2014 J. Mater. Chem. A 2 18742
|
[47] |
Chen Y, Chen T and Dai L 2015 Adv. Mater 27 1053
|
[48] |
Yang D, Yang Z, Qin W, Zhang Y, Liu S and Li C 2015 J. Mater. Chem. A 3 9401
|
[49] |
Werner J, Barraud L, Walter A, Bräuninger M, Sahli F, Sacchetto D, Tétreault N, Paviet-Salomon B, Moon S J, Allebé C, Despeisse M, Nicolay S, De Wolf S, Niesen B and Ballif C 2016 ACS Energy Lette ACS Energy Lett. 1 474
|
[50] |
Forgács D, Gil-Escrig L, Pérez-Del-Rey D, Momblona C, Werner J, Niesen B, Ballif C, Sessolo M and Bolink H J 2017 Adv. Energy Mater. 7 1602121
|
[51] |
Ahmad S, Kanaujia P K, Niu W, Baumberg J J and Vijaya Prakash G 2014 ACS Appl. Mater. Interfaces 6 10238
|
[52] |
Era M, Hattori T, Taira T and Tsutsui T 1997 Chem. Mater. 9 8
|
[53] |
Era M, Maeda K and Tsutsui T 1998 Thin Solid Films 331 285
|
[54] |
Shi B, Liu, B, Luo J, Li Y, Zheng C, Yao X and Zhang X 2017 Sol. Energy Mater. Sol. Cells 168 214
|
[55] |
Fu F, Kranz L, Yoon S, Löckinger J, Jäger T, Perrenoud J, Feurer T, Gretener C, Buecheler S and Tiwari A N 2015 Physica Status Solidi (a) 212 2708
|
[56] |
Mahmud M A, Elumalai N K, Upama M B, Wang D, Puthen-Veettil B, Haque F, Wright M, Xu C, Pivrikas A and Uddin A 2017 Sol. Energy Mater. Sol. Cells 167 87
|
[57] |
Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K and Zhao Y 2016 Nat. Commun. 7 12305
|
[58] |
Zhou H, Chen Q, Li G, Luo S, Song T b, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
|
[59] |
Song T B, Chen Q, Zhou H, Luo S, Yang Y, You J and Yang Y 2015 Nano Energy 12 494
|
[60] |
Ono L K, Leyden M R, Wang S and Qi Y 2016 J. Mater. Chem. A 4 6693
|
[61] |
Wang S, Ono L K, Leyden M R, Kato Y, Raga S R, Lee M V and Qi Y 2015 J. Mater. Chem. A 3 14631
|
[62] |
Bryant D G P, Troughton J, et al. 2014 Adv. Mater. Interfaces 26 7499
|
[63] |
Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K and Grätzel M 2014 Adv. Funct. Mater. 24 3250
|
[64] |
Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X and You J 2017 Adv. Mater. 1703852
|
[65] |
Zhang T, Yang M, Zhao Y and Zhu K 2015 Nano Lett. 15 3959
|
[66] |
Im J H, Jang I H, Pellet N, Grätzel M and Park N G 2014 Nat. Nanotech. 9 927
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|