Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016802    DOI: 10.1088/1674-1056/27/1/016802
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods

Lijian Meng(孟立建)1,2, Tao Yang(杨涛)3, Sining Yun(云斯宁)1, Can Li(李灿)4
1 Functional Materials Laboratory, School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710311, China;
2 Departamento de Física and Centre of Innovation in Engineering and Industrial Technology, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Portugal;
3 Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
4 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract  TiO2 nanorods have been prepared on ITO substrates by dc reactive magnetron sputtering technique. The hydroxyl groups have been introduced on the nanorods surface. The structure and the optical properties of these nanorods have been studied. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorods as photoelectrode. And the effect of the hydroxyl groups on the properties of the photoelectric conversion of the DSSCs has been studied.
Keywords:  hydroxyl groups      TiO2 nanorod      dye-sensitized solar cells      sputtering  
Received:  20 September 2017      Revised:  18 November 2017      Accepted manuscript online: 
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  81.15.Cd (Deposition by sputtering)  
  88.40.H- (Solar cells (photovoltaics))  
Corresponding Authors:  Lijian Meng     E-mail:  ljm@isep.ipp.pt

Cite this article: 

Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿) Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods 2018 Chin. Phys. B 27 016802

[1] O'Regan B and Gratzel M 1991 Nature 353 737
[2] Wang H X and Peter L M 2012 J. Phys. Chem. C 116 10468
[3] Wang H X, Liu M N, Zhang M, Wang P, Miura H, Cheng Y and Bell J 2011 Phys. Chem. Chem. Phys. 13 17359
[4] Burke A, Ito S, Snaith H, Bach U, Kwiatkowski J and Gratzel M 2008 Nano Lett. 8 977
[5] Gu Z Y, Gao X D, Li X M, Jiang Z W and Huang Y D 2014 J. Alloys Compd. 590 33
[6] Zhao X G, Jin E M and Gu H B 2013 Appl. Surf. Sci. 287 8
[7] Zhang X B, Tian H M, Wang X Y, Xue G G, Tian Z P, Zhang J Y, Yuan S K, Yu T and Zou Z G 2013 Mater Lett. 100 51
[8] Zhang X H, Ogawa J, Sunahara K, Cui Y, Uemura Y, Miyasaka T, Furube A, Koumura N, Hara K and Mori S 2013 J. Phys. Chem. C 117 2024
[9] Zhang X B, Tian H M, Wang X Y, Xue G G, Tian Z P, Zhang J Y, Yuan S K, Yu T and Zou Z G 2013 J. Alloys Compd. 578 309
[10] Kuo Y Y, Lin J G and Chien C H 2012 J. Electrochem. Soc. 159 K46
[11] Kwon Y S, Song I Y, Lim J, Park S H, Siva A, Park Y C, Jang H M and Park T 2012 Rsc Adv. 2 3467
[12] Thavasi V, Renugopalakrishnan V, Jose R and Ramakrishna S 2009 Mat. Sci. Eng. R 63 81
[13] Park J T, Chi W S, Jeon H and Kim J H 2014 Nanoscale 6 2718
[14] Wu M X, Lin X, Wang Y D, Wang L, Guo W, Qu D D, Peng X J, Hagfeldt A, Gratzel M and Ma T L 2012 J. Am. Chem. Soc. 134 3419
[15] Wu M X, Lin X, Wang T H, Qiu J S and Ma T L 2011 Energ. Environ. Sci. 4 2308
[16] Liang D W, Tang Q W, Chu L, Li Q H, He B L, Cai H Y and Wang M 2013 Rsc Adv. 3 25190
[17] He B L, Tang Q W, Luo J H, Li Q H, Chen X X and Cai H Y 2014 J. Power Sources 256 170
[18] Gao Y F, Nagai M, Seo W S and Koumoto K 2007 J. Am. Ceram. Soc. 90 831
[19] Zhu K, Neale N R, Miedaner A and Frank A J 2007 Nano Lett. 7 69
[20] Law M, Greene L E, Johnson J C, Saykally R and Yang P D 2005 Nat. Mater. 4 455
[21] Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M and Wang F 2004 J. Am. Chem. Soc. 126 14943
[22] Jiu J, Isoda S, Wang F and Adachi M 2006 J. Phys. Chem. B 110 2087.
[23] Shao F, Sun J, Gao L, Chen J Z and Yang S W 2014 Rsc Adv. 4 7805
[24] Sabba D, Agarwala S, Pramana S S and Mhaisalkar S 2014 Nanoscale Res. Lett. 9 14
[25] Ren J B, Que W X, Yin X T, He Y C and Javed H M A 2014 Rsc Adv. 4 7454.
[26] Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y and Yoshikawa S 2004 J. Photoch. Photobio. A 164 145
[27] Lee B H, Song M Y, Jang S Y, Jo S M, Kwak S Y and Kim D Y 2009 J. Phys. Chem. C 113 21453
[28] Wang L J, Li Q, Hao Y Z, Shen S G and Xu D S 2016 Acta Phys. -Chim. Sin. 32 983
[29] Gomez M M, Lu J, Olsson E, Hagfeldt A and Granqvist C G 2000 Sol. Energ. Mat. Sol. C 64 385
[30] Gomez M M, Lu J, Solis J L, Olsson E, Hagfeldt A and Granqvist C G 2000 J. Phys. Chem. B 104 8712
[31] Hossain M F, Biswas S, Takahashi T, Kubota Y and Fujishima A 2008 Thin Solid Films 516 7149
[32] Waita S M, Aduda B O, Mwabora J M, Granqvist C G, Lindquist S E, Niklasson G A, Hafeldt A and Boschloo G 2007 J. Electroanal. Chem. 605 151
[33] Kang S H, Kang M S, Kim H S, Kim J Y, Chung Y H, Smyri W H and Sung Y E 2008 J. Power Sources 184 331
[34] Sung Y M and Kim H J 2007 Thin Solid Films 515 4996
[35] Meng L J, Ma A, Ying P, Feng Z and Li C 2011 J. Nanosci. Nanotechnol. 11 929
[36] Meng L J and Li C 2011 Nanosci. Nanotech. Lett. 3 181
[37] Meng L J, Li C and dos Santos M P 2011 J. Inorg. Organomet. P 21 770
[38] Meng L J, Li C and dos Santos M P 2013 J. Inorg. Organomet. P 23 787
[39] Meng L J, Ren T and Li C 2010 Appl. Surf. Sci. 256 3676
[40] Lazzeri M, Vittadini A and Selloni A 2002 Phys. Rev. B 65 119901
[41] Thompson C V 2000 Annu. Rev. Mater. Sci. 30 159
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[4] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[5] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[8] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[9] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[10] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[11] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[12] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[13] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[14] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[15] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
No Suggested Reading articles found!