CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of preparation parameters on growth and properties of β-Ga2O3 film |
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜)†, Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺) |
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract The Ga$_{2}$O$_{3}$ films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters (such as argon-oxygen flow ratio, sputtering power, sputtering time and annealing temperature) on the growth and properties ($e.g.$, surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer (XRD), scanning electron microscope (SEM), and ultraviolet-visible spectrophotometer (UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the $\beta $-Ga$_{2}$O$_{3}$ film are influenced by those parameters. All $\beta $-Ga$_{2}$O$_{3 }$films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The $I$-$V$ curves show that the Ohmic behavior between metal and $\beta $-Ga$_{2}$O$_{3}$ films is obtained at 900 ${^\circ}$C. Those results will be helpful for the further research of $\beta $-Ga$_{2}$O$_{3}$ photoelectric semiconductor.
|
Received: 13 February 2022
Revised: 23 May 2022
Accepted manuscript online: 24 May 2022
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the Science and Technology Major Project of Shanxi Province, China (Grant No. 20181102013), the "1331 Project" Engineering Research Center of Shanxi Province, China (Grant No. PT201801), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D221131). |
Corresponding Authors:
Yong-Sheng Wang
E-mail: wangyongsheng@tyut.edu.cn
|
Cite this article:
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺) Effects of preparation parameters on growth and properties of β-Ga2O3 film 2023 Chin. Phys. B 32 017301
|
[1] Tian A Q, Hu L, Zhang L Q, Liu J P and Yang H 2020 Sci. China-Mater. 63 1348 [2] Chen D Z, Yuan P, Zhao S L, Liu S, Xin Q, Song X F, Yan S Q, Zhang Y C, Xi H, Zhu W D, Zhang W H, Zhang J Q, Zhou H, Zhang C F, Zhang J C and Hao Y 2022 Sci. China-Mater. 65 795 [3] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205 [4] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504 [5] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001 [6] Wellenius P, Suresh A, Foreman J V, Everitt H O and Muth J F 2008 Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 146 252 [7] Zhang L C, Zhao F Z, Wang F F and Li Q S 2013 Chin. Phys. B 22 128502 [8] Liu Z F, Yamazaki T, Shen Y B, Kikuta T, Nakatani N and Li Y X 2008 Sens. Actuators B-Chem. 129 666 [9] Jin C, Park S, Kim H and Lee C 2012 Sens. Actuators B-Chem. 161 223 [10] Kim H, Jin C, An S and Lee C 2012 Ceram. Int. 38 3563 [11] Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M and Du G T 2019 Chin. Phys. B 28 048502 [12] Arora K, Goel N, Kumar M and Kumar M 2018 Acs Photon. 5 2391 [13] Wang X, Gu W F, Qiao Y F, Feng Z Y, An Y H, Zhang S H and Liu Z 2021 Chin. Phys. B 30 114211 [14] Ma J, Lee O and Yoo G 2019 IEEE J. Electron Dev. Soc. 7 512 [15] Ma X F, Huang Y Q, Zhi Y S, Wang X, Li P G, Wu Z P and Tang W H 2019 Chin. Phys. B 28 088503 [16] Guo L L, Zhang Y M, Luan S Z, Qiao R D and Jia R X 2022 Chin. Phys. B 31 017304 [17] Rao C, Fei Z Y, Chen W Q, Chen Z M, Lu X, Wang G, Wang X Z, Liang J and Pei Y L 2020 Chin. Phys. B 29 097303 [18] Dong L P, Jia R X. Li C, Xin B and Zhang Y M 2017 J. Alloys Compd. 712 379 [19] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Device Lett. 34 493 [20] Shimbori A, Wong H Y and Huang A Q 2020 Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), September 13-18, 2020, Vienna Austria, p. 218 [21] Oh S, Kim C K and Kim J 2018 Acs Photon. 5 1123 [22] Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J and Tang C C 2013 J. Lumines. 140 30 [23] Green A J, Chabak K D, Heller E R, Fitch R C, Baldini M, Fiedler A, Irmscher K, Wagner G, Galazka Z, Tetlak S E, Crespo A, Leedy K and Jessen G H 2016 IEEE Electron Dev. Lett. 37 902 [24] Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K and Zhu D L 2018 J. Alloys Compd. 747 869 [25] Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M and Du G T 2015 Appl. Surf. Sci. 325 258 [26] Shih H Y, Chu F C, Das A, Lee C Y, Chen M J and Lin R M 2016 Nanoscale Res. Lett. 11 235 [27] Liao Y K, Jiao S J, Li S F, Wang J Z, Wang D B, Gao S Y, Yu Q J and Li H T 2018 Crystengcomm 20 133 [28] Ma H L and Fan D W 2009 Chin. Phys. Lett. 26 117302 [29] Dong L P, Jia R X, Xin B and Zhang Y M 2016 J. Vac. Sci. Technol. A 34 060602 [30] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y and Li W J 2019 J. Alloys Compd. 803 9 [31] Zhi Y S, Jiang W Y, Liu Z, Liu Y Y, Chu X L, Liu J H, Li S, Yan Z Y, Wang Y H, Li P G, Wu Z P and Tang W H 2021 Chin. Phys. B 30 057301 [32] Holzwarth U and Gibson N 2011 Nat. Nanotechnol. 6 534 [33] Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L and Li Y R 2016 Opt. Mater. 51 203 [34] Li S F, Jiao S J, Wang D B, Gao S Y and Wang J Z 2018 J. Alloys Compd. 753 186 [35] Lu Y M, Li C, Chen X H, Han S, Cao P J, Jia F, Zeng Y X, Liu X K, Xu W Y, Liu W J and Zhu D L 2019 Chin. Phys. B 28 018504 [36] Nishinaka H, Tahara D, Morimoto S and Yoshimoto M 2017 Mater. Lett. 205 28 [37] Wang Y H, Li H R, Cao J, Shen J Y, Zhang Q Y, Yang Y T, Dong Z G, Zhou T H, Zhang Y, Tang W H and Wu Z P 2021 ACS Nano 15 16654 [38] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R and Fornari R 2012 Appl. Phys. Lett. 101 132106 [39] Lee M H and Peterson R L 2021 J. Mater. Res. 36 4771 [40] Lovejoy T C, Chen R Y, Zheng X, Villora E G, Shimamura K, Yoshikawa H, Yamashita H, Ueda S, Kobayashi K, Dunham S T, Ohuchi F S and Olmstead M A 2012 Appl. Phys. Lett. 100 181602 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|