Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114211    DOI: 10.1088/1674-1056/ac11e7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass

Xia Wang(王霞)1,†, Wei-Fang Gu(古卫芳)1, Yong-Feng Qiao(乔永凤)1, Zhi-Yong Feng(冯志永)1, Yue-Hua An(安跃华)2, Shao-Hui Zhang(张少辉)3, and Zeng Liu(刘增)4,5
1 Department of Electrical Engineering and Automation, Shanxi Institute of Technology, Yangquan 045000, China;
2 School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
3 Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of;
2 D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
4 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
5 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The determination of band offsets is crucial in the optimization of Ga2O3-based devices, since the band alignment types could determine the operations of devices due to the restriction of carrier transport across the heterogeneous interfaces. In this work, the band offsets of the Ga2O3/FTO heterojunction are studied using x-ray photoelectron spectroscopy (XPS) based on Kraut's method, which suggests a staggered type-Ⅱ alignment with a conduction band offset (ΔEC) of 1.66 eV and a valence band offset (ΔEV) of -2.41 eV. Furthermore, the electronic properties of the Ga2O3/FTO heterostructure are also measured, both in the dark and under ultraviolet (UV) illuminated conditions (254 nm UV light). Overall, this work can provide meaningful guidance for the design and construction of oxide hetero-structured devices based on wide-bandgap semiconducting Ga2O3.
Keywords:  Ga2O3/FTO heterojunction      band alignment      magnetron sputtering      free-standing  
Received:  01 June 2021      Revised:  30 June 2021      Accepted manuscript online:  07 July 2021
PACS:  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  42.70.-a (Optical materials)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the Fund of Shanxi Institute of Technology (Grant No. 2021QD-15), 2020 Excellent Doctoral Award Fund for working in Shanxi Province (Shanxi Institute of Technology), China (Grant No. 2021PT-09), and the National Natural Science Foundation of China (Grant No. 62004047).
Corresponding Authors:  Xia Wang     E-mail:  tianmingduwu@bupt.cn

Cite this article: 

Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增) Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass 2021 Chin. Phys. B 30 114211

[1] Wilson A H 1939 Semiconductors and Metals (Cambridge: Cambridge University Press)
[2] Robertson J 2000 J. Vac. Sci. Technol. B 18 1785
[3] Mannhart J and Schlom D 2010 Science 327 1607
[4] Bayraktaroglu B 2017 Assessment of Gallium Oxide Technology (America: the USA 88th Air Base Wing) (88 ABW)
[5] Hwang W, Verma A, Peelaers H, Protasenko V, Rouvimov S, Xing H, Seabaugh A, Haensch W, Van de Walle C and Galazka Z 2014 Appl. Phys. Lett. 104 203111
[6] Tsao Y, Chowdhury S and Hollis M 2018 Adv. Electron. Mater. 4 1600501
[7] Liu Z, Li P, Zhi Y, Wang X, Chu X and Tang W 2019 Chin. Phys. B 28 017105
[8] Rao C, Fei Z, Che, W, Chen Z, Lu X, Wang G, Wang X, Liang J and Pei Y 2020 Chin. Phys. B 29 097303
[9] Zhi Y, Liu Z, Wang X, Li S, Wang X, Chu X, Li P, Guo D, Wu Z and Tang W 2020 J. Vac. Sci. Technol. A. 38 023202
[10] Liu Z, Liu Y, Wang X, Li W, Zhi Y, Wang X, Li P and Tang W 2019 J. Appl. Phys. 126 045707
[11] Tersoff J 1984 Phys. Rev. B 30 4874
[12] Baik K H, Bevlin K, Carey I V P H, et al. 2019 Gallium Oxide: Technology, Devices and Applications (Amsterdam: Elsevier)
[13] Zhu B, Liu F, Li K, Lv K, Wu J, Gan Z, Liu J, Zeng D and Xie C 2017 Ceram. Int. 43 10288
[14] Chen C, Lee W, Chen Y, Lu C, Lin H and Wu C 2015 Adv. Mater. 27 4883
[15] Zhang J, Lou Y, Liu M, Zhou H, Zhao Y, Wang Z, Shi L, Li D and Yuan S 2018 ACS Appl. Mater. Interfaces 10 15697
[16] Afre R, Sharma N, Sharon M and Sharon M 2018 Review On Advanced Materials Science 53 79
[17] Li Z, Xu Y, Zhang J, Cheng Y, Chen D, Feng Q and Xu S 2019 IEEE Photon. J. 11 6803709
[18] Sun H, Castanedo C, Liu K, Li K, Guo W, Lin R, Liu X, Li J and Li X 2017 Appl. Phys. Lett. 111 162105
[19] Mastro M, Kuramata A, Calkins J, Kim J, Ren F and Peartong S 2017 ECS J. Solid State Sci. Technol. 6 P356
[20] Kraut E, Grant A, Waldrop J and Kowalczyk S 1980 Phys. Rev. Lett. 44 1620
[21] Waldrop J, Grant R, Kowalczyk S and Kraut E 1985 J. Vac. Sci. Technol. A 3 835
[22] Wang X, Wu Z, Cui W, Zhi Y, Li Z, Li P, Guo D and Tang W 2019 Chin. Phys. B 28 017305
[23] Wang X, Chen Z, Guo D, Zhang X, Wu Z, Li P and Tang W 2018 Opt. Mater. Express 8 2918
[24] Ikhmayies S 2016 International Journal of Hydrogen Energy 41 12626
[25] Faber H, Das S, Lin Y, Pliatsikas N, Zhao K, Kehagias T, Dimitrakopulos G, Amassian A, Patsalas P and Anthopoulos T 2017 Sci. Adv. 3 e1602640
[26] Klein A 2012 Thin Solid Films 520 3721
[27] Van de Walle C and Neugebauer J 2003 Nature 423 62
[28] Xie C, Lu X, Tong X, Zhang Z, Liang F, Liang L, Luo L and Wu Y 2019 Adv. Funct. Mater. 29 1806006
[29] Liu Z, Wang X, Zhi Y, Wang X, Chu X, Li S, Yan Z, Li P and Tang W 2019 Phys. Status Solidi A 216 1900570
[30] Klein A 2015 J. Phys. Condens. Matter 27 134201
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[4] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[5] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[6] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[7] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[10] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[11] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[12] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[13] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[14] Insight into band alignment of Zn(O,S)/CZTSe solar cell by simulation
Zhen-Wu Jiang(姜振武), Shou-Shuai Gao(高守帅), Si-Yu Wang(王思宇), Dong-Xiao Wang(王东潇), Peng Gao(高鹏), Qiang Sun(孙强), Zhi-Qiang Zhou(周志强), Wei Liu(刘玮), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(4): 048801.
[15] Synthesis of free-standing Ga2O3 films for flexible devices by water etching of Sr3Al2O6 sacrificial layers
Xia Wang(王霞), Zhen-Ping Wu(吴真平), Wei Cui(崔尉), Yu-Song Zhi(支钰崧), Zhi-Peng Li(李志鹏), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(1): 017305.
No Suggested Reading articles found!