Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016801    DOI: 10.1088/1674-1056/27/1/016801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Charge distribution in graphene from quantum calculation

Ze-Fen Liang(梁泽芬)1,2, Sheng-Ling Ma(马生凌)1, Hong-Tao Xue(薛红涛)1, Fan Ding(樊丁)1, Jingbo Louise Liu3, Fu-Ling Tang(汤富领)1,3
1 Department of Materials Science and Engineering, Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China;
2 Department of Mechanical and Electrical Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China;
3 Department of Chemistry, Texas A & M University, Kingsville, TX 78363, USA
Abstract  

The local charge distributions of different shape graphene sheets are investigated by using the quantum calculations. It is found that the charge distribution on carbon atom is not uniform, strongly depending on its position in the graphene and its local atomic environment condition. The symmetrical characteristic and geometrical structures of graphene also have an important influence on the charge distribution. The charges of atom at the graphene edge are strongly related to their surrounding bonds. It is found that the charges of double-bonded atom at the zigzag edge are closely related to the bond angle, but the charges of double-bonded atom at the armchair edge are mainly influenced by the area of triangle. The charges of triple-bonded atom at the edge are mainly affected by the standard deviation of the length of the associated triple bonds.

Keywords:  graphene      charge distribution      geometry  
Received:  07 September 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  73.22.Pr (Electronic structure of graphene)  
  81.07.Vb (Quantum wires)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11764027 and 11364025) and the Chinese Scholarship Council (Grant No. 201408625041).

Corresponding Authors:  Fu-Ling Tang     E-mail:  tfl03@mails.tsinghua.edu.cn

Cite this article: 

Ze-Fen Liang(梁泽芬), Sheng-Ling Ma(马生凌), Hong-Tao Xue(薛红涛), Fan Ding(樊丁), Jingbo Louise Liu, Fu-Ling Tang(汤富领) Charge distribution in graphene from quantum calculation 2018 Chin. Phys. B 27 016801

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Rafiee M A 2011 Dissertations & Theses-Gradworks 442 282
[3] Geim A K 2009 Science 324 1530
[4] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J and Roth S 2007 Nature 446 60
[5] Zou R J, Zhang Z Y, Xu K B, Jiang L, Tian Q W, Sun Y G, Chen Z G and Hu J Q 2012 Carbon 50 4965
[6] Huang X, Yin Z Y, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F and Zhang H 2011 Small 7 1876
[7] Xiao Z, She J, Deng S, Tang Z, Li Z, Lu J and Xu N 2010 ACS Nano 4 6332
[8] Frank I W, Tanenbaum D M, Van Z A M and Mceuen P L 2007 Vac. Sci. & Technol. B Microelectron. & Nanometer Struct. 25 2558
[9] Kang S H, Fang T H and Hong Z H 2013 J. Phys. & Chem. Solids 74 1783
[10] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[11] Berger C, Song Z, Li X, et al. 312 1191
[12] Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H and Ouyang F P 2012 Chin. Phys. B 21 027102
[13] Dai X Q, Tang Y N, Dai Y W, Li Y H, Zhao J H, Zhao B and Yang Z X 2011 Chin. Phys. B 20 056801
[14] Saito R, Fujita M, Dresselhaus G and Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204
[15] Tongay S, Senger R T, Dag S and Ciraci S 2004 Phys. Rev. Lett. 93 136404
[16] Xu C, Xu B, Gu Y, Xiong Z and Sun J 2013 Energy & Environ. Sci. 6 1388
[17] Owens F J 2008 J. Chem. Phys. 128 194701
[18] Falkovsky L A 2008 J. Exp. & Theor. Phys. 106 575
[19] Prezzi D, Varsano D, Ruini A, Marini A and Molinari E 2007 Phys. Rev. B 77 041404
[20] Falkovsky L A 2008 Phys.-Uspekhi 51 923
[21] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S and Roth S 2006 Phys. Rev. Lett. 97 187401
[22] Zhu G B and Zhang P 2013 Chin. Phys. B 22 017303
[23] Ghosh S, Calizo I, Teweldebrhan D and Pokatilov E P 2008 Appl. Phys. Lett. 92 151911
[24] Cui J B, Sordan R, Burghard M and Kern K 2002 Appl. Phys. Lett. 81 3260
[25] Robinson J T, Perkins F K, Snow E S, Wei Z and Sheehan P E 2008 Nano Lett. 8 3137
[26] Wu H Q, Linghu C Y, Lu H M and Qian H 2013 Chin. Phys. B 22 098106
[27] Ritter K A and Lyding J W 2009 Nat. Mater. 8 235
[28] Zeng H, Zhao J, Wei J W and Hu H F 2011 Eur. Phys. J. B 79 335
[29] Pereira V M and Neto A H C 2009 Phys. Rev. Lett. 103 046801
[30] Silvestrov P G and Efetov K B 2008 Phys. Rev. B 77 155436
[31] Wang Z and Scharstein R W 2010 Chem. Phys. Lett. 489 229
[32] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
[33] Zhou W, Zhou J, Shen J, Ouyang C and Shi S 2012 J. Phys. Chem. Solids 73 245
[34] Ding Y, Wang Y, Shi S and Tang W 2011 J. Phys. Chem. C 115 5334
[35] Stewart J J P 1990 J. Comput. Aided Mol. Des. 4 1
[36] Haynes P, Skylaris C K, Mostofi A and Payne M 2007 Mol. Simulation 33 551
[37] Yadav J S, Hermsmeier M and Gund T 1989 Int. J. Quantum Chem. 36 101
[38] Armstrong D R, Perkins P G and Stewart J J P 1973 J. Chem. Soc. Dalton Trans. 8 838
[39] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[40] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[41] Li Y F, Zhou Z, Shen P and Chen Z 2009 Nano 3 1952
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!