Abstract Despite anionic doping has been widely implemented to increase the visible light activity of TiO, it often gives rise to a dramatical anodic shift in current onset potential. Herein, we show an effective method to achieve the huge cathodic shift of TiO photoanode with significantly enhanced visible light photo-electrochemical activity by nitrogen/cobalt co-implantation. The nitrogen/cobalt co-doped TiO nanorod arrays (N/Co-TiO) exhibit a cathodic shift of 350 mV in onset potential relative to only nitrogen-doped TiO (N-TiO). Moreover, the visible-light ( nm) photocurrent density of N/Co-TiO reaches 0.46 mA/cm, far exceeding 0.07 mA/cm in N-TiO at 1.23 V reversible hydrogen electrode (RHE). Systematic characterization studies demonstrate that the enhanced photo-electrochemical performance can be attributed to the surface synergic sputtering of high-energy nitrogen/cobalt ions.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875211), the Major Science and Technology Program of Changsha, China (Grant No. kq1902046), and the Fundamental Research Funds for the Central Universities, China.
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠) Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation 2021 Chin. Phys. B 30 058505
[1] Fujishima A and Honda K 1972 Nature238 37 [2] Chen X, Liu L, Yu P Y and Mao S S 2011 Science331 746 [3] Sambur J B, Chen T Y, Choudhary E, Chen G, Nissen E J, Thomas E M, Zou N and Chen P 2016 Nature530 77 [4] Shaner M R, Hu S, Sun K and Lewis N S 2015 Energy Environ. Sci.8 203 [5] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z and Li Y 2011 Nano Lett.11 3026 [6] Hoang S, Berglund S P, Hahn N T, Bard A J and Mullins C B 2012 J. Am. Chem. Soc.134 3659 [7] Song X, He D, Li W, Ke Z, Liu J, Tang C, Cheng L, Jiang C, Wang Z and Xiao X 2019 Angew. Chem. Int. Edit.58 16660 [8] Wang G, Xiao X, Li W, Lin Z, Zhao Z, Chen C, Wang C, Li Y, Huang X, Miao L, Jiang C, Huang Y and Duan X 2015 Nano Lett.15 4692 [9] Chen X and Burda C 2008 J. Am. Chem. Soc.130 5018 [10] Song X, Li W, Liu X, Wu Y, He D, Ke Z, Cheng L, Jiang C, Wang G, Xiao X and Li Y 2021 J. Energy Chem.55 154 [11] Jang J W, Du C, Ye Y, Lin Y, Yao X, Thorne J, Liu E, McMahon G, Zhu J, Javey A, Guo, J and Wang, D 2015 Nat. Commun.6 7447 [12] Liu C, Tang J, Chen H M, Liu B and Yang P 2013 Nano Lett.13 2989 [13] Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp I D, Kudo A, Yamada T and Domen K 2016 Nat. Mater.15 611 [14] Hoang S, Guo S, Hahn N T, Bard A J and Mullins C B 2012 Nano Lett.12 26 [15] Dearnaley G 1975 Nature256 701 [16] Song X, Li W, He D, Wu H, Ke Z, Jiang C, Wang G and Xiao X 2018 Adv. Energy Mater.8 1800165 [17] Song X, Dai Z, Xiao X, Li W, Zheng X, Shang X, Zhang X, Cai G, Wu W, Meng F and Jiang C 2015 Sci. Rep.5 17529 [18] Zheng X, Shen S, Ren F, Cai G, Xing Z, Liu Y, liu D, Zhang G, Xiao X, Wu W and Jiang C 2015 Int. J. Hydrogen Energy40 5034 [19] Ou X, Heinig K H, Hubner R, Grenzer J, Wang X, Helm M, Fassbender J and Facsko S 2015 Nanoscale7 18928 [20] Zhou X, Häublein V, Ning L, Nguyen N T, Zolnhofer E M, Tsuchiya H, Killian M S, Meyer K, Frey L and Schmuki P 2016 Angew. Chem. Int. Edit.55 3763 [21] Ou X, Keller A, Helm M, Fassbender J and Facsko S 2013 Phys. Rev. Lett.111 016101 [22] Liu B and Aydil E S 2009 J. Am. Chem. Soc.131 3985 [23] Narayanan P 1950 Proceedings-Mathematical Sciences32 279 [24] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science293 269 [25] Varley J B, Janotti A and Van de Walle C G 2011 Adv. Mater.23 2343 [26] Wang L, Zhang W, Zheng X, Chen Y, Wu W, Qiu J, Zhao X, Zhao X, Dai Y and Zeng J 2017 Nat. Energy2 869 [27] Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G and Yu Q 2014 Nat. Nanotechnol.9 69 [28] He D, Song X, Li W, Tang C, Liu J, Ke Z, Jiang C and Xiao X 2020 Angew. Chem. Int. Ed.59 6929 [29] Chambers S A, Wang C M, Thevuthasan S, Droubay T, McCready D E, Lea A S, Shutthanandan V and Windisch C F 2002 Thin Solid Films418 197 [30] Manivannan A, Seehra M S, Majumder S B and Katiyar R S 2003 Appl. Phys. Lett.83 111 [31] Dean M H and Stimming U 1989 J. Phys. Chem.93 8053 [32] Fang W, Wang X, Zhang H, Jia Y, Huo Z, Li Z, Zhao H, Yang H and Yao X 2014 J. Mater. Chem. A2 3513
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.