PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak |
Dawei Ye(叶大为)1,2, Fang Ding(丁芳)1,†, Kedong Li(李克栋)1,2, Zhenhua Hu(胡振华)1, Ling Zhang(张凌)1, Xiahua Chen(陈夏华)1,2, Qing Zhang(张青)1,2, Pingan Zhao(赵平安)1,2, Tao He(贺涛)1,2, Lingyi Meng(孟令义)1,2, Kaixuan Ye(叶凯萱)1, Fubin Zhong(钟富彬)1, Yanmin Duan(段艳敏)1, Rui Ding(丁锐)1, Liang Wang(王亮)1, Guosheng Xu(徐国盛)1, Guangnan Luo(罗广南)1,2, and EAST team |
1 Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences(CAS), Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Neon (Ne) seeding is used to cool the edge plasma by radiation to protect the divertor tungsten (W) target in the Experimental Advanced Superconducting Tokamak (EAST). The W sputtering in the outer divertor target with Ne seeding is assessed by the divertor visible spectroscopy system. It is observed that the W sputtering flux initially increases with Ne concentration in the divertor despite the decreasing plasma temperature. After reaching a maximum around 25 eV, the W sputtering rate starts to decrease, presenting a suppression effect. The effect on the divertor W sputtering flux and yield due to the competition between the increase of the Ne concentration and the decrease of the plasma temperature is discussed. The results show that enough Ne seeding is essential to effectively reduce the electron temperature and thus to suppress W sputtering. Moreover, ELM suppression is observed when Ne and W impurities enter the core plasma, which could be correlated to the enhanced turbulence transport in the pedestal.
|
Received: 22 December 2021
Revised: 22 January 2022
Accepted manuscript online: 27 January 2022
|
PACS:
|
52.25.Vy
|
(Impurities in plasmas)
|
|
52.40.Hf
|
(Plasma-material interactions; boundary layer effects)
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFE0301300, 2017YFA0402500, and 2018YFE0303103), the National Natural Science Foundation of China (Grant Nos. 12192283 and 12022511), the Users with Excellence Project of Hefei Science Center, CAS (Grant No. 2018HSC-UE008), the CASHIPS Director's Fund (Grant No. BJPY2019B01), the JSPS-CAS Bilateral Joint Research Project (Grant No. GJHZ201984), and the Key Research Program of Frontier Sciences of CAS (Grant No. ZDBS-LY-SLH010). |
Corresponding Authors:
Fang Ding
E-mail: fding@ipp.ac.cn
|
Cite this article:
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak 2022 Chin. Phys. B 31 065201
|
[1] Naujoks D, Asmussen K, Bessenrodt-Weberpals M, Deschka S, Dux R, Engelhardt W, Field A R, Fussmann G, Fuchs J C and Garcia-Rosales C 1996 Nucl. Fusion 36 671 [2] Sytova E, Pitts R A, Kaveeva E, Bonnin X and Reimold F 2019 Nucl. Mater. Energy 19 72 [3] Drenik A, Laguardia L, McDermott R, Meisl G, Neu R, Oberkofler M, Pawelec E, Pitts R A, Potzel S, Pütterich T, Reichbauer T, Rohde V, Seibt M, De Temmerman G and Zaplotnik R 2019 Nucl. Fusion 59 046010 [4] Zhao X, Sang C, Zhou Q, Zhang C, Zhang Y, Ding R, Ding F and Wang D 2020 Plasma Phys. Control. Fusion 62 055015 [5] Wan Y X, HT-7 Team and HT-7U Team 2000 Nucl. Fusion 40 1057 [6] Zhou Z B, Yao D M and Cao L 2014 J. Fusion Energy 34 93 [7] Xu G S, Wang L, Yao D M, Jia G Z, Sang C F, Liu X J, Chen Y P, Si H, Yang Z S, Guo H Y, Du H L, Luo Z P, Li H, Zhou Z B, Cao L, Xu H C, Xu T J, Wang Z L, Zi P F, Li L, Han L, Xu J C, Liu J B, Li K D, Cao B, Yu Y W, Ding F, Ding R, Yan N, Meng L Y, Tao Y Q, Wang H Q, Zhang Y, Shao L M, Zhang X D, Zhu S Z, Wan B N and East Team 2021 Nucl. Fusion 61 126070 [8] Mao H, Ding F, Luo G N, Hu Z, Chen X, Xu F, Yang Z, Chen J, Wang L, Ding R, Zhang L, Gao W, Xu J and Wu C 2017 Rev. Sci. Instrum. 88 043502 [9] Behringer K, Summers H P and Denne B 1989 Plasma Phys. Control. Fusion 31 2059 [10] Pospieszczyk A, Borodin D, Brezinsek S, Huber A, Kirschner A, Mertens P, Sergienko G, Schweer B, Beigman I L and Vainshtein L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144017 [11] van Rooij G J, Coenen J W, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews G F, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp M F, the ASDEX Upgrade Team JET-EFDA Contributors 2013 J. Nucl. Mater. 438 S42 [12] Mao H, Ding F, Luo G N, Hu Z, Chen X, Xu F, Hu J, Zuo G, Sun Z, Yu Y, Wu J, Wang L, Duan Y, Xu J, Chen J, Yang Z, Ding R and Xie H 2017 Nucl. Mater. Energy 12 447 [13] Duan Y M, Hu L Q, Mao S T, Xu P, Chen K Y, Lin S Y, Zhong G Q, Zhang J Z, Zhang L and Wang L 2011 Plasma Sci. Technol. 13 546 [14] Xu J C, Wang L, Xu G S, Luo G N, Yao D M, Li Q, Cao L, Chen L, Zhang W, Liu S C, Wang H Q, Jia M N, Feng W, Deng G Z, Hu L Q, Wan B N, Li J, Sun Y W and Guo H Y 2016 Rev. Sci. Instrum. 87 083504 [15] Zhang L, Morita S, Xu Z, Wu Z, Zhang P, Wu C, Gao W, Ohishi T, Goto M, Shen J, Chen Y, Liu X, Wang Y, Dong C, Zhang H, Huang X, Gong X, Hu L, Chen J, Zhang X, Wan B and Li J 2015 Rev. Sci. Instrum. 86 123509 [16] Zhang L, Morita S, Xu Z, Zhang P F, Zang Q, Duan Y M, Liu H Q, Zhao H L, Ding F, Ohishi T, Gao W, Huang J, Yang X D, Chen Y J, Wu Z W, Xu P, Ding B J, Hu C D, Gong X Z, Chen J L and Hu L Q 2017 Nucl. Mater. Energy 12 774 [17] Xu G S, Yuan Q P, Li K D, Wang L, Xu J C, Yang Q Q, Duan Y M, Meng L Y, Yang Z S, Ding F, Liu J B, Guo H Y, Wang H Q, Eldon D, Tao Y Q, Wu K, Yan N, Ding R, Wang Y F, Ye Y, Zhang L, Zhang T, Zang Q, Li Y Y, Liu H Q, Jia G Z, Liu X J, Si H, Li E Z, Zeng L, Qian J P, Lin S Y, Xu L Q, Wang H H, Gong X Z and Wan B N 2020 Nucl. Fusion 60 086001 [18] Eckstein W 2002 IPP-rep. [19] Ou J, Xiang N, Men Z Z, Zhang L, Xu J C and Gao W 2019 Chin. Phys. B 28 125201 [20] Xu G, Zhou Y, Mao S, Kong D, Li L, Chan V and Ye M 2018 IEEE Trans. Plasma Sci. 46 1382 [21] Xu Y, Xu G, Mao S and Ye M 2021 Plasma Phys. Control. Fusion 63 095003 [22] Stangeby P C and Moulton D 2020 Nucl. Fusion 60 106005 [23] Xiang H M, Zhang T, Wen F, Qu H, Wu M F, Geng K N, Li G S, Wang Y M, Han X, Liu Z X, Zhong F B, Ye K X, Zhang S B and Gao X 2018 Rev. Sci. Instrum. 89 10H103 [24] Zhang Y P, Mazon D, Zou X L, Zhong W L, Gao J M, Zhang K, Sun P, Dong C F, Cui Z Y, Liu Y, Shi Z B, Yu D L, Cheng J, Jiang M, Xu J Q, Isobe M, Xiao G L, Chen W, Song S D, Bai X Y, Zhang P F, Yuan G L, Ji X Q, Li Y G, Zhou Y, Delpech L, Ekedahl A, Giruzzi G, Hoang T, Peysson Y, Song X M, Song X Y, Li X, Ding X T, Dong J Q, Yang Q W, Xu M, Duan X R and Liu Y 2018 Nucl. Fusion 58 046018 [25] Zhang S, Gao X, Ling B, Wang Y, Zhang T, Han X, Liu Z, Bu J and Li J 2014 Plasma Sci. Technol. 16 311 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|