Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066101    DOI: 10.1088/1674-1056/ac43a9
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering

Min Huang(黄敏)1, Yan-Song Liu(刘艳松)1,†, Zhi-Bing He(何智兵)1, and Yong Yi(易勇)2
1 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;
2 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Crystalline phase and microstructure control are critical for obtaining desired properties of Ta films deposited by magnetron sputtering. Structure, phase evolution and properties of Ta films deposited by using hybrid high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) under different fractions of DCMS power were investigated, where Ta ion to Ta neutral ratios of the deposition flux were changed. The results revealed that the number of Ta ions arriving on the substrate/growing film plays an important role in structure and phase evolution of Ta films. It can effectively avoid the unstable arc discharge under low pressure and show a higher deposition rate by combining HiPIMS and DCMS compared with only HiPIMS. Meanwhile, the high hardness α -Ta films can be directly deposited by hybrid co-sputtering compared to those prepared by DCMS. In the co-sputtering technology, pure α -Ta phase films with extremely fine, dense and uniform crystal grains were obtained, which showed smooth surface roughness (3.22 nm), low resistivity (38.98 μΩ · cm) and abnormal high hardness (17.64 GPa).
Keywords:  hybrid sputtering      tantalum thin film      structure      hardness  
Received:  04 February 2021      Revised:  12 December 2021      Accepted manuscript online:  16 December 2021
PACS:  61.05.-a (Techniques for structure determination)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  81.70.Bt (Mechanical testing, impact tests, static and dynamic loads)  
  52.65.Ww (Hybrid methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51401194).
Corresponding Authors:  Yan-Song Liu     E-mail:  jdliuyansong@163.com

Cite this article: 

Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇) Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering 2022 Chin. Phys. B 31 066101

[1] Sun X, Lv S, Li Y, Huang C, Ma H and Luo J 2020 Mat. Sci. Semicon. Proc. 115 105120
[2] Borisyuk P V, Vasilyev O S, Lebedinskii Y Y, Bortko D V and Karazhanov S 2021 Mater. Lett. 286 129204
[3] Shiri S, Odeshi A, Chen N, Feng R, Sutarto R and Yang Q 2019 Surf. Coat. Technol. 358 942
[4] Latif R, Jaafar M F, Aziz M F, Zain A R M, Yunas J and Majlis B Y 2020 Int. J. Refract. Met. H 92 105314
[5] Ellis E A I, Chmielus M, Han S and Baker S P 2020 Acta Mater. 183 504
[6] Ghailane A, Makha M, Larhlimi H and Alami J 2020 Mater. Lett. 280 128540
[7] Navid A A and Hodge A M 2012 Mat. Ssi. Eng. A 536 49
[8] Roychowdhury T, Shah D, Jain V, Patel D I, Dodson B, Skinner W, Hilfiker J N, Smith S J and Linford M R 2020 Surf. Interface Anal. 52 433
[9] Jiang F, Zhang T F, Wu B H, Yu Y, Wu Y P, Zhu S F, Jing F J, Huang N and Leng Y X 2016 Surf. Coat. Technol. 292 54
[10] Zhang H, Cherng J S and Chen Q 2019 AIP Adv. 9 035242
[11] Ghailane A, Larhlimi H, Tamraoui Y, Makha M, Busch H, Fischer C B and Alami J 2020 Surf. Coat. Technol. 404 126572
[12] Gui B, Zhou H, Zheng J, Liu X, Feng X, Zhang Y and Yang L 2021 Ceram. Int. 47 8175
[13] Tillmann W, Grisales D, Stangier D, Ben Jebara I and Kang H 2019 Surf. Coat. Technol. 378 125075
[14] Samuesson M, Lundin D, Sarakinos K, Björefors F, Wälivaara B, Ljungcrantz H and Helmersson U 2012 J. Vac. Sci. Technol. A 30 031507
[15] Zoita N, Dinu M, Kiss A, Logofatu C and Braic M 2021 Appl. Surf. Sci. 537 147903
[16] Luo Q, Yang S and Cooke K E 2013 Surf. Coat. Technol. 236 13
[17] Mendez A, Monclus M A, Santiago J A, Fernandez-Martinez I, Rojas T C, Garcia-Molleja J and Molina-Aldareguia J M 2021 Surf. Coat. Tech. 422 127513
[18] Evaristo M, Fernandes F and Cavaleiro A 2020 Coatings 10 319
[19] Lin J, John J M, William D S, Sabrina L L and Jun W 2010 IEEE Trans. Plasma Sci. 38 3071
[20] Fábio F, Cláudio S, Albano C, André A and João O 2016 Surf. Coat. Technol. 314 97
[21] Ma D, Deng Q, Liu H and Leng Y X 2021 Coating 11 579
[22] Koller C M, Marihart H, Bolvardi H, Kolozsvári S and Mayrhofer P H 2018 Surf. Coat. Technol. 347 304
[23] Engwall A M, Shin S J, Bae J and Wang Y M 2019 Surf. Coat. Technol. 363 191
[24] Myers S, Lin J, Souza R M, Sproul W D and Moore J J 2013 Surf. Coat. Technol. 214 38
[25] Ferreira F, Cavaleiro A and Oliveira J 2020 Metals 10 1618
[26] Gladczuk L, Patel A, Paur C S and Sosnowski M 2004 Thin. Solid Films 467 150
[27] Mongstad T, You C C, Thogersen A, Maehlen J P, Platzer-Björkman C, Hauback B C and Karazhanov S Z 2012 J. Alloy Compd. 527 76
[28] Xiao Y, Wu L, Luo J and Zhou L H 2020 Diam. Relat. Mater. 108 107991
[29] Li J, Fang Q, Liu B, Liu Y and Liu Y 2016 J. Micromech. Microeng. 1 1650001
[30] Javidjam A, Hekmatshoar M H, Hedayatifar L and Abad S N K 2018 Mater. Res. Express 6 036407
[31] Hua D, Xia Q, Wang W, Zhou Q, Li S, Qian D, Shi J and Wang H 2021 Int. J. Plasticity 142 102997
[32] Rackwitz J, Yu Q, Yang Y, Laplanche G, George E P, Minor A M and Ritchie R O 2020 Acta Mater. 200 351
[33] Cao F H, Wang Y J and Dai L H 2020 Acta Mater. 194 283
[34] Dada M, Popoola P, Mathe N, Adeosun S and Pityana S 2021 Int. J. Mater. Res. 3 339
[35] Bhardwaj V, Zhou Q, Zhang F, Han W, Du Y, Hua K and Wang H 2021 Tribol. Int. 160 107031
[36] Tian W, Dai J, Zhang L, Chang Y, Bao M and Yu S 2020 Surf. Eng. 37 160
[37] Luo D, Zhou Q and Ye W 2021 Acs. Appl. Mater. Inter. 13 55712
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[7] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[8] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[11] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[12] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[13] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[14] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[15] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
No Suggested Reading articles found!