Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026101    DOI: 10.1088/1674-1056/abc15e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties

Yong Li(李勇)†, Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿)
Laboratory of Nano Optoelectronic Materials and Insulation Materials, Pingdingshan University, Pingdingshan 467000, China
Abstract  Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction. The CdS/Si nanofilm heterojunctions are fabricated by using the radio frequency magnetron sputtering method to deposit the amorphous silicon nanofilms and CdS nanofilms on the ITO glass in turn. The relation of current density to applied voltage (I-V) shows the obvious rectification effect. From the analysis of the double logarithm I-V curve it follows that below ∼ 2.73 V the electron behaviors obey the Ohmic mechanism and above ∼ 2.73 V the electron behaviors conform to the space charge limited current (SCLC) mechanism. In the SCLC region part of the traps between the Fermi level and conduction band are occupied, and with the increase of voltage most of the traps are occupied. It is believed that CdS/Si nanofilm heterojunction is a potential candidate in the field of nano electronic and optoelectronic devices by optimizing its fabricating procedure.
Keywords:  magnetron sputtering      CdS/Si nanofilm heterojunctions      electron behaviors      SCLC mechanisms  
Received:  18 August 2020      Revised:  16 September 2020      Accepted manuscript online:  15 October 2020
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.20.Nr (Semiconductor compounds)  
  73.61.-r (Electrical properties of specific thin films)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the Natural Science Foundation of Henan Province,China (Grant No. 202300410304) and the Key Research Project for Science and Technology of the Education Department of Henan Province, China (Grant No. 21A140021).
Corresponding Authors:  Corresponding author. E-mail: liyong@pdsu.edu.cn, kmly0126@163.com   

Cite this article: 

Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿) CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties 2021 Chin. Phys. B 30 026101

1 Wu Y, Xiang J, Yang C, Lu W and Lieber C M 2004 Nature 430 61
2 Soga T2006 Nanostructured materials for solar energy conversion, Vol 1 (Oxford: Elsevier) Vol. 1, pp. 3-44
3 Adinolfi V and Sargent E H 2017 Nature 542 324
4 Takeda Y 2019 Prog. Photovolt.: Res. Appl. 27 528
5 Alialy S, Kaya A, Uslu \.I and Altíndal S 2015 Chin. Phys. Lett. 32 116102
6 Han C B, He C and Li X J 2011 Adv. Mater. 23 4811
7 Li Y, Song Y L, Ji P F and Zhou F Q 2017 Nanoscale 9 5922
8 Li L, Wu P, Fang X, Zhai T, Dai L, Liao M, Koide Y, Wang H, Bando Y and Golberg D 2010 Adv. Mater. 22 3161
9 Zhai T, Li L, Ma Y, Liao M, Wang X, Fang X, Yao J, Bando Y and Golberg D 2011 Chem. Soc. Rev. 40 2986
10 Jie J, Zhang W, Bello I, Lee C S and Lee S T 2010 Nano Today 5 313
11 Peng K Q, Wang X, Li L, Hu Y and Lee S T 2013 Nano Today 8 75
12 Martini L, Serenelli L, Menchini F, Izzi M and Tucci M 2020 Prog. Photovolt: Res. Appl. 28 307
13 Kovalev D 2010 Nat. Nanotech. 5 827
14 Okimura H, Kawakami M and Sakai Y 1967 Jpn. J. Appl. Phys. 6 908
15 Li Y, Wang X B, Tian Y T and Li X J 2014 Physica E 64 45
16 Dai Y, Wang X, Peng W, Wu C, Ding Y, Dong K and Wang Z L 2018 Nano Energy 44 311
17 Gao B, Zhao Y, Cai L, Liu P, Liang Z and Shen H 2018 Solar Energy 173 635
18 Garcia F J, Ortiz-Conde A, Sa-Neto A, Coluzza C, Garozzo M, Maletta G, Margadonna D, Tomaciello R and Migliorato P 1988 Appl. Phys. Lett. 52 1261
19 Cai L, Wang W, Jin L, Yao Z, Lin W, Meng L, Ai B, Liang Z, Huang Y, Zhang F, Altermatt P P and Shen H 2019 Adv. Mater. Interfaces 6 1900367
20 Sarkar A, Katiyar A K, Mukherjee S, Singh S, Singh S K, Das A K and Ray S K 2019 ACS Appl. Electron. Mater. 1 25
21 Zhao Z H and Dai Y 2019 Phys. Chem. Chem. Phys. 21 9574
22 Li Y, Jiang W F, Song Y L, Ji P F, Zhou F Q, Tian M L, Huang H C, Xi D S and Man J P 2018 J. Alloys Compd. 741 1153
23 Ismail R A, Al-Samarai A M E and Ali A Y 2018 Optik 168 302
24 Li Y, Ji P F, Song Y L, Zhou F Q, Yuan S Q, Wen N and Huang H C 2018 Mater. Lett. 228 463
25 Thanikaikarasan S, Mahalingam T, Sundaram K, Kathalingam A, Deak Kim Y and Kim T 2009 Vacuum 83 1066
26 Li Y, Gao L, Song Y L, Xue X C, Ji P F, Zhou F Q and Li X J 2015 Mater. Lett. 139 126
27 Datta A, Chavan P G, Sheini F J, More M A, Joag D S and Patra A 2009 Cryst. Growth Des. 9 4157
28 Kim S, Kim M C, Choi S H, Kim K J, Hwang H N and Hwang C C 2007 Appl. Phys. Lett. 91 103113
29 Yu J, Gong C, Wu Z, Wu Y, Xiao W, Su Y, Sun L and Lin C 2015 J. Mater. Chem. A 3 22218
30 Walker B, Kim G H, Heo J, Chae G J, Park J, Seo J H and Kim J Y 2014 RSC Adv. 4 3153
31 Farag A A M, Farooq W A and Yakuphanoglu F 2011 Microelectron. Eng. 88 2894
32 Simpkins B S, Mastro M A, Eddy J C R, Hite J K and Pehrsson P E 2011 J. Appl. Phys. 110 044303
33 Liu X F, Luo Z J, Zhou X, Wei J M, Wang Y, Guo X, Lv B and Ding Z 2019 Chin. Phys. B 28 086105
34 Acha C 2017 J. Appl. Phys. 121 134502
35 Mukherjee A 2007 J. Appl. Phys. 101 034106
36 Rose A 1955 Phys. Rev. 97 1538
37 Anjaneyulu P, Sangeeth C S S and Menon R 2010 J. Appl. Phys. 107 093716
38 Talin A A, Léonard F, Swartzentruber B S, Wang X and Hersee S D 2008 Phys. Rev. Lett. 101 076802
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[4] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[5] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[6] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[7] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[8] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[9] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[10] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
[11] Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas
Yan Zhao(赵艳), Wei Gao(高伟), Bo Xu(徐博), Ying-Ai Li(李英爱), Hong-Dong Li(李红东), Guang-Rui Gu(顾广瑞), Hong Yin(殷红). Chin. Phys. B, 2016, 25(10): 106801.
[12] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
[13] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei (王威), Shen Hong-Lie (沈鸿烈), Jin Jia-Le (金佳乐), Li Jin-Ze (李金泽), Ma Yue (马跃). Chin. Phys. B, 2015, 24(5): 056805.
[14] Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications
Gu Jin-Hua (谷锦华), Si Jia-Le (司嘉乐), Wang Jiu-Xiu (王九秀), Feng Ya-Yang (冯亚阳), Gao Xiao-Yong (郜小勇), Lu Jing-Xiao (卢景霄). Chin. Phys. B, 2015, 24(11): 117703.
[15] Structures and optical properties of tungsten oxide thin films deposited by magnetron sputtering of WO3 bulk:Effects of annealing temperatures
Zhang Feng (张锋), Wang Hai-Qian (王海千), Wang Song (王松), Wang Jing-Yang (汪竟阳), Zhong Zhi-Cheng (钟志成), Jin Ye (金叶). Chin. Phys. B, 2014, 23(9): 098105.
No Suggested Reading articles found!