Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 096301    DOI: 10.1088/1674-1056/26/9/096301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs2SnX6 (X= Cl, Br, I)

Hai-Ming Huang(黄海铭)1,2, Zhen-Yi Jiang(姜振益)1, Shi-Jun Luo(罗时军)2
1 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Model Physics, Northwest University, Xi'an 710069, China;
2 School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
Abstract  

The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6 (X=Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6, 2.36 eV for Cs2SnBr6, and 0.92 eV for Cs2SnI6, which agree with the experimental results. The Cs2SnCl6, Cs2SnBr6, and Cs2SnI6 are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.

Keywords:  first-principles calculation      perovskites      elastic properties      optical properties  
Received:  29 March 2017      Revised:  22 May 2017      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  87.19.rd (Elastic properties)  
  78.40.Fy (Semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51572219 and 11447030), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2015JM1018), and Graduate's Innovation Fund of Northwest University of China (Grant No. YJG15007).

Corresponding Authors:  Zhen-Yi Jiang     E-mail:  jiangzy@nwu.edu.cn

Cite this article: 

Hai-Ming Huang(黄海铭), Zhen-Yi Jiang(姜振益), Shi-Jun Luo(罗时军) First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs2SnX6 (X= Cl, Br, I) 2017 Chin. Phys. B 26 096301

[1] Chung I, Lee B, He J, Chang R P H and Kanatzidis M G 2012 Nature 485 486
[2] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzeld M and Whitec T J 2013 J. Mater. Chem. A 1 5628
[3] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[4] Brivio F, Walker A B and Walsh A 2013 APL Mater. 1 042111
[5] Eperon G E, Paternó G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688
[6] Weller M T, Weber O J, Henry P F, Di Pumpo A M and Hansen T C 2015 Chem. Commun. 51 4180
[7] Lee C, Hong J, Stroppa A, Whangbo M H and Shim J H 2015 RSC Adv. 5 78701
[8] Feng J and Xiao B 2014 J. Phys. Chem. C 118 19655
[9] Yuan Y, Xu R, Xu H T, Hong F, Xu F and Wang L J 2015 Chin. Phys. B 24 116302
[10] Du H J, Wang W C and Zhu J Z 2016 Chin. Phys. B 25 108803
[11] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[12] Boix P P, Agarwala S, Koh T M, Mathews N and Mhaisalkar S G 2015 J. Phys. Chem. Lett. 6 898
[13] Lora da Silva E, Skelton J M, Parker S C and Walsh A 2015 Phys. Rev. B 91 144107
[14] Szafranski M and Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458
[15] Yi H T, Wu X X, Zhu X Y and Podzorov V 2016 Adv. Mater. 28 6509
[16] Chen Z, Wang J J, Ren Y, Yu C and Shum K 2012 Appl. Phys. Lett. 101 093901
[17] Qiu X F, Cao B Q, Yuan S, Chen X F, Qiu Z W, Jiang Y N, Ye Q, Wang H Q, Zeng H B, Liu J and Kanatzidis M G 2017 Sol. Energy Mater. Sol. Cells 159 227
[18] Kaltzoglou A, Antoniadou M, Kontos A G, Stoumpos C C, Perganti D, Siranidi E, Raptis V, Trohidou K N, Psycharis V, Kanatzidis M G and Falaras P 2016 J. Phys. Chem. C 120 11777
[19] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O and Neilson J R 2016 J. Am. Chem. Soc. 138 8453
[20] Xiao Z W, Lei H C, Zhang X, Zhou Y Y, Hosono H and Kamiya T 2015 Bull. Chem. Soc. Jpn. 88 1250
[21] Lee B, Stoumpos C C, Zhou N J, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G and Chang R P H 2014 J. Am. Chem. Soc. 136 15379
[22] Xiao Z W, Zhou Y Y, Hosono H and Kamiya T 2015 Phys. Chem. Chem. Phys. 17 18900
[23] Saparov B, Sun J P, Meng W W, Xiao Z W, Duan H S, Gunawan O, Shin D, Hill I G, Yan Y F and Mitzi D B 2016 Chem. Mater. 28 2315
[24] Feng J 2014 APL Mater. 2 081801
[25] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[28] Torres D T, Freire J D and Katiyar R S 1997 Phys. Rev. B 56 7763
[29] Brill T B, Gerhart R C and Welsh W A 1974 J. Magn. Reson. 13 27
[30] Ketelaar J A A, Rietdijk A A and van Staveren C H 2010 Recl. Trav. Chim. Pays-Bas 56 907
[31] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019
[32] Wang G T, Wang D Y and Shi X B 2015 AIP Advances 5 127224
[33] Gu J B, Wang C J, Zhang W X, Sun Bin, Liu G Q, Liu D D and Yang X D 2016 Chin. Phys. B 25 126103
[34] Pugh S F 1954 Philos. Mag. 45 823
[35] Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloy. Compd. 585 587
[36] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[37] Mujica A and Needs R J 1996 J. Phys.: Conden. Matter 8 L237
[38] Kumar V, Jha V and Shrivastava A K 2010 Cryst. Res. Technol. 45 920
[39] Lu W F, Li C J, Sarac B, Şopu D, Yi J H, Tan J, Stoica M and Eckert J 2017 J. Alloy. Compd. 705 445
[40] Fine M E, Brown M D and Marcus H L 1984 Scr. Metall. 18 951
[41] Parvin R, Parvin F, Ali M S and Islam A K M A 2016 Chin. Phys. B 25 083101
[42] Fahad S, Murtaza G, Ouahrani T, Khenata R, Yousaf M, Omran S B and Mohammad S 2015 J. Alloy. Compd. 646 211
[43] Zhao S, Lan C, Ma J, Pandey S S, Hayase S and Ma T 2015 Solid State Commun. 213-214 19
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[15] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
No Suggested Reading articles found!