Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 096201    DOI: 10.1088/1674-1056/26/9/096201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical study on the structural, mechanical, electronic properties and QTAIM of CrB4 as a hard material

Xiao-Hong Li(李小红)1,2, Hong-Ling Cui(崔红玲)1, Rui-Zhou Zhang(张瑞州)1
1 College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003, China;
2 Department of Chemistry, University of Calgary, Calgary, T2N1N4, Canada
Abstract  Using the first-principles calculations based on spin density functional theory (DFT), we investigate the structure, elastic properties, and electronic structure of Pnnm-CrB4. It is found that Pnnm-CrB4 is thermodynamically and mechanically stable. The calculated elastic properties such as the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio indicate that CrB4 is an incompressible material. Vicker's hardness of Pnnm-CrB4 is estimated to be 26.3 GPa, which is in good agreement with the experimental values. The analysis of the investigated electronic properties shows that Pnnm-CrB4 has the metallic character and there exist strong B-B and Cr-B bonds in the compound, which are further confirmed by Bader's quantum theory of atoms in molecules (QTAIM). Thermodynamic properties are also investigated.
Keywords:  first-principles      elastic property      electronic property      QTAIM  
Received:  14 April 2017      Revised:  23 May 2017      Accepted manuscript online: 
PACS:  62.20.Dc  
  63.20.dk (First-principles theory)  
  63.20 Dj  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1304111), Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 14HASTIT039), and the Innovation Team of Henan University of Science and Technology, China (Grant No. 2015XTD001).
Corresponding Authors:  Xiao-Hong Li     E-mail:  lorna639@126.com

Cite this article: 

Xiao-Hong Li(李小红), Hong-Ling Cui(崔红玲), Rui-Zhou Zhang(张瑞州) Theoretical study on the structural, mechanical, electronic properties and QTAIM of CrB4 as a hard material 2017 Chin. Phys. B 26 096201

[1] Veprek S, Zhang R F and Argon A S 2011 J. Superhard Mater. 33 409
[2] Bao K, Ma S L, Xu C H and Cui T 2017 Acta Phys. Sin. 66 36104 (in Chinese)
[3] Fahrenholtz W G, Hilmas G E, Talmy I G and Zaykoski J A 2007 J. Am. Ceram. Soc. 90 1347
[4] Levine J B, Tolbert S H and Kaner R B 2009 Adv. Funct. Mater. 19 3519
[5] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[6] Gu Q, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
[7] Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B and Tolbert S H 2012 Phys. Rev. B 85 064118
[8] Zhang M, Lu M and Du Y 2014 J. Phys. Chem. 140 174505
[9] Andersso S and Lundstro T 1968 Acta Chem. Scand. 22 3103
[10] Sue J A, Tucker R C and Nemeth J P (U.S. Patent) 6 007 922 [1999-04-15]
[11] Knappschneider A, Litterscheid C, Kurzman J, Seshadri R and Albert B 2011 Inorg. Chem. 50 10540
[12] Niu H, Wang J, Chen X Q, Li D, Li Y, Lazar P, Podloucky R and Kolmogorov A N 2012 Phys. Rev. B 85 144116
[13] Wang S, Yu X, Zhang J, Wang L, Leinenweber K, Xu H, Popov D, Park C, Yang W, He D and Zhao Y 2014 J. Superhard Mater. 36 279
[14] Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R and Albert B 2013 Inorg. Chem. 52 540
[15] Baroni S, Corso A dal, Gironcoli S de, Giannozzi P, Cavazzoni C, Ballabio G, Scandolo S, Chiarotti G, Focher P, Pasquarello A, Laasonen K, Trave A, Car R, Marzari N and Kokalj A
[16] Perdew J P, Nurke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Andersson S and Lundstroem T 1955 Acta Chemica Scandinavica 9 1107
[18] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter. 14 2717
[19] Pfrommer B G, Cote M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[20] Vanderbilt D 1990 Phys. Rev. B 41 7892
[21] Albert B and Hillebrecht H 2009 Angew. Chem. 12 8794
[22] Albert B and Hillebrecht H 2009 Angew. Chem. Int. Ed. 48 8640
[23] Gou H, Li Z, Zhang J, Gao F, Rodney C and Lian J 2012 Comput. Mater. Sci. 53 460
[24] Ade M and Hillebrecht H 2015 Inorg. Chem. 54 6122
[25] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[26] Winey J M and Gupta Y M 2013 Phys. Rev. B 87 174104
[27] Xu C, Li Q, Liu C M, Duan M Y and Wang H K 2016 Inter. J. Modern Phys. B 30 1650098
[28] Patil S K R, Khare S V, Tuttle B R, Bording J K and Kodambaka S 2006 Phys. Rev. B 73 104118
[29] Pugh S F 1954 Philos. Mag. Ser. 45 823
[30] Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
[31] Li H, Zhang J and Gou H 2014 J. Solid State Chem. 213 52
[32] Jiang X, Zhao J and Jiang X 2011 Comput. Mater. Sci. 50 2287
[33] Levine J B, Tolbert S H and Kaner R B 2009 Adv. Funct. Matter. 19 3519
[34] Nye J F 1985 Physical Properties of Crystals (Oxford: Clarendon Press) pp. 78, 79
[35] Fu Y Y, Li Y W and Huang H M 2014 Chin. Phys. Lett. 31 116201
[36] Tang X, Hao J and Li Y 2015 Phys. Chem. Chem. Phys. 17 27821
[37] Vajeeston P, Ravindran P and Ravi C 2001 Phys. Rev. B 63 045115
[38] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter. 21 084204
[39] Bader R F W and Essén H 1984 J. Chem. Phys. 80 1943
[40] Varadwaj P R and Marques H M 2010 Phys. Chem. Chem. Phys. 12 2126
[41] Cramer D and Kraka E 1984 Angew. Chem. Int. Ed. Engl. 23 627
[42] Cramer D and Kraka E 1984 Croat. Chem. Acta 57 1259
[43] Espinosa E, Alkorta I, Elguero J and Molins E 2002 J. Chem. Phys. 117 5529
[44] Jenkins S and Morrison I 2000 Chem. Phys. Lett. 317 97
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!